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1.  INTRODUCTION

1.1 Background. Several spaceborne surveillance and weapon system con-
cepts for the USAF and DARPA require precision line-of-sight (LOS) and figure
control in order to achieve their missions. To date four major system con-
cepts have been identified: High Altitude Large Optics (HALO), Advanced
Optical Technology (ADOPT), Large Beam Expander Technology (LBET), and Large
Optics Demonstration (LODE). Each of these systems has common features in
terms of its large size, extreme complexity, low mass, low stiffness and pre-
cision structural tolerances. Each concept also is required to maintain
stringent LOS and figure stability despite the fact that isolation, damping,
and control technology required to achieve the desired performance is beyond
the state-of-the-art practiced today. New control techniques must be devel-
oped and demonstrated which have broad application to Large Space Structures
(LSS) of the type described above.

1.2 ACOSS SEVENTEEN Objective. The objective of this contract is to
extend the work and results developed under Contract No. F30602-81-C-0179
(ACOSS FIFTEEN) and specifically to study active structural control tech-
nology as applied to Large Space Structures (LSS). In particular,

1.2.1 To provide analysis and design tools that can be readily applied
by practicing dynamicists and control system engineers in their investiga-
tions and design of future Large Space Structures; and

1.2.2 To provide an evaluation of new control techniques that have been
developed for application to Large Space Structures. This objective is in
support of the overall ACOSS objective which is to develop and understand a
generic, unified structural dynamics and control technology base for LSS with
stringent line-of-sight (LOS) and figure performance requirements that must
be maintained in the presence of onboard and natural disturbances.

1.2.3 To develop highly accurate, computationally-efficient dynamics and
control models of future ACOSS-type LSS systems.

.....
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2. ACHIEVEMENTS

[l i o

2.1 Task 1 - Digital Implementation of Control Technologies - . ®

2.1.1 Introduction. The recent advances in the area of digital com-
puting have made possible new and innovative approaches to control system
analysis and design. As far as the analysis is concerned, computers have
reduced the computational burdens associated with this process and thus >
g allowed the designer to use his intuition and skills to concentrate on the )
b control problem. S

LAMAE 2B 20 an A a0

n‘ -l

This section discusses two approaches to the design of digital control- S

, lers for the ACOSS structure. The first approach uses classical sampled-data .

ig frequency domain techniques to design digital filters that exclude dynamic A

effects of high frequency bending modes (with respect to control system band- Y

{ width). The second approach is an extension of Seltzer's Digital Parameter _

Space Method to large scale systems [1]. The method permits the analytical

and graphical portrayal of stability conditions as a function of closed-loop
damping and natural frequency.

e

. A paper, entitled "Extensions of the Parameter Space Method to Large
Flexible Structures" (AIAA Paper No. AIAA-82-1437), was prepared by Drs.
Seltzer, Worley, and York. It was approved by RADC for presentation at the
1982 AIAA Guidance and Control Conference in San Diego in August 1982. A
copy of the paper is provided as Appendix A.

[atiat e e SALe gl oc
' .

2.1.2. Computer-Aided Design. ®

2.1.2.1. Frequency Response Analysis. The frequency response method of
control system analysis and design has several advantages over time-domain
techniques. The main advantage is that it is possible to take a simplistic
approach to design in the frequency domain, whereas time-domain or optimal
control techniques often result in designs that are either extremely compli-
cated and expensive to implement or physically unrealizable. By cleverly
using a common data base, the frequency-domain method lends itself well to
the analysis of very high order systems.

Ry

v fff'.
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The philosophy used here is to develop one program that could be used to
r’ generate the sampled-data frequency responses of each transfer function in L)
the system. With the common data base a second program could then be used to ‘
access the response data previously generated and algebraically manipulate it
in any manner the designer chooses.
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: Parameter Space Method to Large Flexible Structures," AIAA/AAS 1
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(a). Frequency Response Generation. The frequency response generation
(FRGEN) code is used at the start of the analysis to create a workspace (data
base) where all response data will be stored. The user specifies the total
number of responses to be stored in the workspace, the total number of points
per response, the frequency range, and the sampling rate for the digital
control system. FRGEN provides the user with a menu of options for data
generation, cataloguing, printing, and plotting.

The computation of sampled-data frequency responses is accomplished
using the infinite series technique, i.e.,

g(ot+)

G*(s) = (1-1)

-00

1] =

-7 Glju + jnug) +
T n=

where « is frequency, G(ju) is the frequency response of a continuous
transfer function, G*(ju) 1is the sampled-data frequency response, T is the
sampling period, ug is the sample rate in rad/sec, and g(0+) is the value of
the impulse response of G(s) evaluated at t = O+ [2]. The series will con-
verge if the transfer function G(s) has at least one more pole than zero.
Practical use of Equation (1-1) is obtained by truncating the series after a
specified number of terms. The program was written so that the user need only
specify a tolerance for this computation, and the number of terms necessary
for convergence is automatically selected. Furthermore, the code naturally
assumes that the continuous system is preceded by a zero order hold whose
transfer function is given by

1 - e-Ts

Ghols) =
° s (1-2)

The program also has the capability of generating the discrete frequency
response of a z-domain transfer function by making the substitution

Z = eJl»T (1‘3)
in the z-transfer function.

(b). Frequency Response Manipulation. The algebraic manipulation
method of analyzing sampled-data systems has been avoided to a large extent

.“.J’L !

. I

2. B. C. Kuo, Digital Control Systems, Holt, Rhinehart, and Winston, New
York, New YEFET‘TQBU.
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due to the fact that it is tedious, and somewhat unrealistic for complex sys-
tems, and hence, signal-flow-graph techniques were indeed preferable. How-
ever the signal-flow-graph technique while being more systematic, can be
extremely involved and is not easily implemented on a digital computer.

The frequency response manipulation (FRMAN) program was written to pro-
vide the user with the routines necessary to make the algebraic analysis as
simple as calculator arithmetic. Thus, by using Seltzer's Systematic Analyt-
ical Method (SAM) [3], or some equivalent technique to determine the loop
transfer functions, FRMAN can then be used to perform the mathematical opera-
tions needed to generate a desired response. Again, the common data base
makes it possible for FRMAN and FRGEN to share the same workspace.

The menu provided with the FRMAN program includes options for catalogu-
ing, printing, and plotting of response data and is identical to the FRGEN
menu. The algebraic routines provided with the code include the addition of
a constant and a response, the sum of two responses, the product of a con-
stant and a response, the product of two responses, the division of one
response by another, and finally the negation of a response. It should be
readily obvious that very complex control systems can be anéﬁyzed using the
generation and manipulation programs.

2.1.2.2 Digital Filter Design Methods.

(a) Direct z-domain Compensator Design. A technique for designing dig-
ital controllers directly in the z-plane has been developed by Mitchell and
Tollison [4] and implemented on Control Dynamic's computing systems. In the
past, digital controller design was accomplished by first producing a w-plane
design using classical techniques such as Wakeland [5], and then by trans-
forming to the z-plane using the bilinear transformation

W= — (1-4)

3. S. M, Seltzer, "SAM: An Alternative to Sampled-Data Signal Flow
Graphs," Technical Report T7-79-49, US Army Missile Research and
Development Command, May 1979.

4. J. R. Mitchell, and D. K. Tollison, "A New Approach to the Analytical
Design of Compensators,"” Proceedings of the 1982 Southeastern
Symposium on System Theory, Virginia Polytechnic Institute and State
University, Blacksburg, Va., April 1982.

5. W. R. Wakeland, "Bode Compensator Design," IEEE Transactions on
Automatic Control, Vol. AC-22, No. 5, October 1977.
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the corresponding z-domain compensator was derived. However, because of non-
linear frequency scaling and the z-plane transformation this method becomes
extremely cumbersome for higher order controllers. Mitchell and Tollison
developed an analytical technique that bypasses the inherent difficulties of
nonlinear frequency scaling associated with the w-plane method and permits
the z-domain compensator to be determined directly in terms of a gain and
phase at a desired frequency. The technique can be used to design various
types of digital filters including lead, lag, lead-lag, and dominant pole
networks. The discussion that follows will show how the design equations are
developed for a simple first order compensator.

The transfer function for a first order digital controller can be writ-
ten in the form

Ge(2) = —————— (1-5)

where the coefficients ag, aj, and b; will be determined such that the com-
pensator is stable, minimum phase, has unity gain in steady-state, and satis-
fies a set of design specifications.

Suppose the compensator is to be designed to produce a gain M; and a phase 03
at some frequency wip, i.e.,

seledu®) = mp/op (1-6)

or in rectangular form

GeledwlT) = x3 + jy1 (1-7)
where T is the sampling period of the digital controller. The substitution
z = eJulT (1-8)
is made in Equation (1-5) and equated to (1-7) to produce
ag + ajedwlT .
1'771525357_' = X1 + Jy1. (1-9)
Using Euler's identity Equation (1-9) can be written as

ag + a7 (cos wiT + j sinwlT)

= X1 + Jy1, (1-10)

1 + by (cos «1T + j sinuwiT)
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ag + (cosu)T) a3 - (x3 coswiT - y] siney) by = x1 (1-12)
(sinwiT) a; - (y1 coswiT + x3 sineiT) by =y (1-13)

At this point the observation can be made that Equations (1-12) and (1-13)
represent a system of algebraic linear equations in terms of the compensator
coefficients. However, there are only two equations and three unknowns. The
third equation that can be imposed on this system is the unity d.c. gain
requirement. In the z-domain “d.c.," or steady-state, corresponds to z = 1.
Using this assertion in Equation (1-5) gives

Gell) = ——— = 1 (1-14)

which produces the equation,

ag + a1 - by = 1. (1-15)

In matrix form the design equations for the first order digital controller
can be written as

1 cosw)T (y1 sinwiT - X3 coswiT a()-1 le
0 sinwiT  -(y1 coswiT - X1 sinwiT) all = lyi1| (1-16)
1 1 -1 by 1

These equations can now be solved for the compensator coefficients.
However, some consideration must be given to the stability of the compensator
in terms of the design specifications. Mitchell and Tollison have shown that

...........
Dl

........

......................
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Cross multiplying in Equation (1-10) yields %:?E
xy + (xy coswiT) by - (y1 sinwiT) by :

+ jlyy + (y1 coswiT) by + (x; sinwiT) byl (1-11) ;,,;i

= a9 + (cosw)T) a1 + j (sinwT) a1 :

Equating real and imaginary parts on both sides gives f;j
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the following requirements must be satisfied in order for the resulting com-
pensator to be both stable and minumum phase:

Stability Requirements.
Lead (6] > 0) and x3 > 1 (1-17a)
Lag (81 <0) and x3 < 1 (1-17b)

Minimum Phase Requirements.
Lead (87 > 0) and M} > x (1-18a)
Ltag (61 < 0) and M} < xp (1-18b)

This technique has been implemented on Control Dynamics' HP-9000 system.
The user inputs the magnitud® and phase contribution of the compensator and
the frequency at which he wants to achieve these specifications. The program
then computes the required compensator coefficients, assuming the specifica-
tions are realistically achievable. The routine has been used along with
FRGEN and FRMAN to perform frequency domain design directly in the z-plane
for a wide variety of control problems.

(b) Digital Controller Design Using the Parameter Space Technique.

(1). Background. The Parameter Space technique has been extended to
the application of digital controller design for large scale systems. The
method being presented here permits the application of the technique to con-
trol problems associated with digital control of large flexible structures
characterized by a rigid body mode and an arbitrary number of bending modes.
Based upon stability considerations and the desired damping and bandwidth,
values for the compensator coefficients can be determined using this tech-
nique. The major contribution of the work presented is the ability to
design digital controllers using the Parameter Space technique in the pres-
ence of an arbitrary number of bending modes. Furthermore, the method
discussed here has been automated on Control Dynamics' digital computers.

The Parameter Space method assumes that the characteristic equation of
the closed loop system can be expressed as a linear function of the parame-
ters defining the parameter space, i.e.,

a(z) = P1(z) a + Pa(z) b + P3(2) (1-19)
where a and b are the two arbitrary parameters. The polynomials Pj(z),
P2(z), and P3(z) are of the form,

n
Pi(2) = § CkiZK, i=1,2 3. (1-20)
k=0

.........
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where n is the order of the system. The characteristic equation in (1-19) '
requires that the overall system be expressed in the z-domain. This aspect

) of the problem becomes significantly difficult for n > 2. Therefore, some
.L‘ method must be devised for automating the z-transform process. The work that T
¢ follows will be devoted to determining the polynomials Pi(z), P2(z), and _...e
P3(z) given by Equation (1-20). ' .
(2) Plant Representation. It is assumed that the plant is expressed |
- in modal coordinates, i.e., -]
. b
F [mlx + [KIX = F (1-21) )
N where R
8 [m] is the system mass matrix,
b'! [k] is the system stiffness matrix,
F 1is a vector force or torque, ®
[' X s a vector of system states
[ Using the traniformation |
! X=Qn :
b (1-22) @
g where Q is the modal matrix composed of the normalized eigenvectors, and n is 1
- a set of generalized coordinates, the desired representation )
\" e ) .'
3 n+ [cln + [®In = Tc (1-23)
( .
) is produced. The matrices [c] and [«®] are the diagonal damping and fre- S _
¥ quency matrices, respectively. I
L Using the Laplace transform technique the transfer function for the ;
# plant is given by “-*“.1
- N ¢i i
[ Gp(s) = ) . . (1-24) O
- i=1 s° + 2zwpis *+ wpi S ]
¢ e
f where B
4 9
g ¢ is the damping ratio for each mode, g
» i is the undamped natural frequency )
[ oF the ith bending mode, ]
e ¢i and yi denote the slope of the ith e
. mode at the sensor, torquer, respectively. "
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The block diagram representation of Equation (1-24) is shown below in Figure S
1-1. g

- A .n.
— 1
N , . :
2
Y —_—
4 Sl*Zzzuzsm;
&)
Y —————
‘ 52’2(3&35’«%
¢
[ 02:,‘...“»..."

Figure 1-1. Block diagram of the plant for the modal representation. "
(3) Control Algorithm Development. Now suppose it is desired to
design a digital controller to stabilize a system of the form shown in Figure N
1-1. (The block diagram in Figure 1-2 showing a digital controller in the -4
forward path will be used for the sake of illustrating the design technique). . o
-
T
— e JDIGITAL CQMeUTER _ _ _ o
yi(0) r oery, ( 1w AU i
1 + 6.(2) s) —/‘ —
: (.) )(T —| & Y L% l G’(s) 'T ?
| I :
| | B
| 1 ;
b e e e = —— = = - .

LN .'."-‘-..‘
PR

. . e
L e . P .

Figure 1-2. Block diagram of the digital control system. °

Since the characteristic equation must be expressed in the z-domain, it o

is necessary to obtain the z-transform of the plant, Gp(s), where Gp(s) is L

.
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given by Equation (1-24). The process of computing the z-transform directly
for systems of order higher than two is extremely difficult, if not impos-
sible. An alternate approach for obtaining the z-transform is to first cast
the continuous system in state variable form, i.e.

(1-25)

x (t) = A x(t) + B u(t)

yol(t) = C x(t)
where
A is the 2N x 2N system matrix,
B is the 2N x 1 input matrix,
C is the 1 x 2N output matrix,
x is the 2N x 1 state vector,
yo is the system output,
and
N is the number of modes, including the rigid body mode.

It is now possible to transform the continuous state equations in Equa-
tion (1-25) to an equivalent set of discrete state equations. Kuo has shown
that the following procedure can be used to compute the discrete state equa-
tions:

Discrete state equations

x[(k + 1)T] = o(T) x(kT) + o(T) u (kT)
yo (kT) = C x (kT) , k=0, 1, 2. ..
o(T) = eAT (1-26)
(1-27)

o(T) = /T o(<) B dr
0

Where A and B are defined in Equation (1-25).
used to compute the z-transform of the plant:

The following steps can now be

(1) Convert discrete state equations to the z-domain

zX(z) = o(T) X(z) + o(T) u(z) (1-28)
(2) Solve for X(2)
x(z) = [z1 - #(T)]-1 o(T) u(z2) (1-29)
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(3) Use the output equation to compute the z-transfer function of

a1,
A
Ll L
. .

PPy
MR Pt )

. the plant, -
Y(2) = CX(2) e
= C [zI - &(T)]-1 o(T) u(2)
Y(2)
Then — = C[zI - #(T)]-1 o(T) (1-30)
u(z)

Equation (1-30) represents the z-transfer function for the open loop
plant in Equation (1-24). Now assume that

Y(z) = Np(2) (1-31) ;;';i

u(z)  Dplz) e

and also assume the digital controller is of the form

o Ne(z) (1 +a)z + (1 - a)
® Gc(Z) = =

= (1-32)
Dc(z) (1 +b)z+ (1 -0Db)

Note that the form of the compensator in (1-32) results in only two arbitrary
coefficients, which is ideal for the Parameter Plane, and also produces unity
gain in steady-state (z=1).

Using Equations (1-31) and (1-32), and the block diagram in Figure 1-2,
the closed loop characteristic equation can be written as

Ne(2) Np(z)
a(z) =1+ ¢ .2 =0
Dc(Z) Np(Z)
or
a(z) = Ne(z) Np(z) + Dclz) Dpl(z) =0 -

Substituting the numerator and denominator of the digital compensator for
Nc(z) and Dc(Z) yields

. Mz) = [ +a) 2+ (1 - a)] Np(2) (1-33)
+ T +b) z+(1-b)]Dp(2) =0

' . .
e, .
e ROy
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Equation (1-33) can now be written in the form required for the Parameter
Plane calculations,

k [(z - 1) Np(2)Ja + [(z - 1) Dp(z)] b + (z + 1) [Np(z) + Dp(2)] =0 (1-34)
Comparison of Equations (1-34) and (1-19) shows that the polynomials neces-

sary to generate a parameter space in terms of the compensator coefficients |

a and b are: A

P1(z) = (z - 1) Np(z) .jf

o ."_1

Pa(z) = (z - 1) Dpl2) (1-35a,b,c) )

P3(2) = (z + 1) [Np(z) + Dp(2)] R

@]

and ]
where Np(z) and Dy(z) are the numerator and denominator polynomials, respec-
tively, of the z-gransfer function of the open-loop plant defined by the sub-

stitutions implied by Equations (1-30) and (1-31). : .d

Equations (1-35a,b,c) contain the polynomial coefficients necessary to ]

use Seltzer's Digital Parameter Space Program. This technique has been PN

applied successfully on large space structure controller design. The follow- .

ing is a summary of the steps involved in using this design technique: -

Step 1: Assuming plant is characterized by modal coordinates, cast ‘

in state variable form, o)

Step 2: Compute the discrete state equations by discretizing the _:ﬂ:{

continuous equations in Step 1, W

. ..-.4

Step 3: Generate the z-transfer function of the open loop plant @,

using Equation (1-30), B

Step 4: Generate the z-domain characteristic equation of the closed ]

loop system including the digital controller coefficients .

(unspecified), )

o,

Step 5: [Identify the polynomials needed to run the Parameter Plane e

Program. AP

Each of these steps has been automated on Control Dynamics' computer ]

system. The only approximation used in the desigr process is the computation "

(] of the discrete state equations. However, if the system is basically low- ;__i
pass, convergence of the series is not a problem, assuming the proper choice LT
of the sampling rate has been made.
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2.1.3. Conclusions.

Software routines have been written that allow systems of the DARPA type
to be analyzed quickly and efficiently. Frequency domain design programs
have been developed that allow digital compensators to be designed rather
simply. A design technique has also been developed that extends the applica-
tion of Seltzer's Digital Parameter Space technique to the design of digital
controllers for 1large flexible structures characterized by an arbitrary
number of bending modes.

13
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2.2 Task 2 - Extensions of Modeling Techniques.

.
R

2.2.1 Ground Test Facility. Control DOynamics modeled the NASA MSFC
Large Space Structure Ground Test Verification Facility (LSS/GTV) which is
shown in Figure 2-1. The test article is the ASTROMAST beam which is placed
atop the Advanced Gimbal System Engineering (EAGS) model. The EAGS, along
with a torque actuator about the vertical axis, provides three torques which
may be used both for control and excitation. The base of the test apparatus
provides two translational degrees of freedom in the horizontal, producing a
five degree of freedom (DOF) system.

I

1
)

e AL

N The ASTROMAST is gravity unloaded by a constant tension cable from the

- mast Tip Instrument Package (TIP) to a tripod mounted on air bearings. Mea-

. surements of translation and rotation of the TIP are provided by gyros and
accelerometers in the instrument package. An additional set of gyros is -
mounted on the EAGS faceplate. An accelerometer package is mounted on the
movable base.

B RSN 4
» T . -
. S le ] !
. . H
PRI

Signals from the instrument packages and to the effectors are handled by
the COSMEC I data and control system at a rate of 50 samples per second. :
This AIM 65 based system carries out an inertial strapdown algorithm to -
remove the effects of gravity and earth rotation from the measurements, exer-
cises a system control law and utilizes the HP 9845C desktop computer as a
data storage, output and post analysis device.

;
\_Jo

The model of the LSS/GTV is based on rigid body models of the base, EAGS
and TIP. The ASTROMAST consists of three small (.1" x .14") rectangular fiber-
glass longerons running the length of the ASTROMAST that are laced together
in an equilateral triangle configuration by .045" diameter fiberglass diago-
nals which are maintained in tension by transverse battens. The diagonals
provide the lateral stiffness of the ASTROMAST which is designed to be
deployable from a cannister into which it can also be retracted manually.
The ASTROMAST consists of 92 identical levels with battens at each level and
diagonal lacework between. The diagonals are cords of fiberglass which are
held in tension by the battens. A model of the ASTROMAST beam was also
developed and coupled analytically to the rest of the LSS/GTV model. The
energy dissipation within the beam structure has previously been shown to be
on the order of 1% or less of critical damping and distributed around the
structure. Thus, detailed analysis of the damping of this structure has not
p;oved to]be necessary, so that proportional, modal damping has been used for
this model.

The modes and frequencies of the composite model are presented in Table
2-1. To be conservative, we have assumed the structural modal damping is
0.5%. All1 modes of our structural model are assumed to be damped at 0.5% of
critical. The inertial displacements are listed for base translation in X and
Y; and gimbal rotations in X, Y, and Z. Motion in six degrees of freedom is
also given for both ends of the beam.
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The first five modes are rigid body modes. It can be seen in Table 2-1
that modes one and two are pure base translations in X and Y. The next three
modes are combinations of base translation in X and Y, and gimbal rotations
in X, Y, and Z. The first bending mode of the structure is at 5.91 rad/sec.

2.2.2 Conclusions. The modeling techniques developed for the LSS/GTV
were given important corroboration by modal testing done on the ASTROMAST
beam at MSFC. These results indicated accuracies in the lower modes of 11%
or better. Thus, a dynamic model was developed of the LSS/GTV and it has
been verified, to the extent it can be currently, with the data available.
The modeling techniques, therefore, adequately represent the structures.
Because the work on Tasks 2 and 5 was so closely related, the results and
conclusions reported in this section serve to describe the accomplishment of
the objective of both tasks.
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& RODAL FREQUENCY

bz TABLE 2-1.
Mode and Frequencies of Composite Model.

0.0000000 RAD/SEC x
PASE TRANSLATION 0.7208357
ROLL GINBAL ROTATIUN 0.0000000
- AZINUTH GINPAL RUFATION 0.0000000
.- ELEVATION GIMBAL KOTATIOR 0.0000000
- PEAN BASE TRANSLATION 0,.7208337
' PEAM BASE RUTAIION 0,0000000
g' TIP INSTRUMENT PACKAGE TRANSLATION 0.7208357
TIP INSTRUMENT PACKAGE ROTATION 0.0000000
MODAL FREQUENCY  0.0000000 RAD/SEC
BASE TRANSLATION 0.0000000
ROLL GIMBAL ROTATION 0.0000000
AZINUTH GIMBAL ROTAT1ON 0.0000000
5 ELEVATION GINBAL RUTATION 0.0000000
° PEAN WASE TRANSLATION 0.0000000
{ BEAN BASE ROTATLON 0.0000000
& TIF INSTRUMENT PACKAGE TKANSLATION 0.0000000
L TIP INSTRUMENT PACKAGE ROTATION 0.0000000
MODAL FREQUENCY  0.0000000 KAD/SEC
- DASE TRANSLATION 0.0101980
" ROLL OINBAL RUTATION 0.1182833
1’ AZINUTH GIABAL RUTATION , 0.0000000
. ELEVATION BINBAL ROTATION 0.0000000
] PEAN BASE TRANSLATION 0.0101980
- BEAN BASE RDTATION 0.0000000
TIP INSTRUMENT PACKAGE TRANSLATION ~0.2215391
t TIP INSTRUMENT PACKAGE ROTATION 0.0000000
b WODAL FREQUENCY  0.0000000 RAD/SEC
), DASE TRANSLATION ~0.24246753
ROLL GIMBAL RUTATION 0.0075818
AZIHUTH GINBAL KOTATION 0.0053638
ELEVATION GINJAL RUFATION 0.0000000
PEAM ¥ASE TRANSLATION ~0.0791644
t PEAMN DASE ROTATION 0.0000000
TIF INSTRUMENT PACKAGE TRANSLATION 3.2448774
L; TIP INSTRUNENT PACKAGE RUTATION 0.0000000
o NOUAL FREQUENCY  0.0000000 KAL/SEC
BASE TRAMSLATION ~0.0000439
ROLL 6IMBAL ROTATION 0.0009641
AZIAUTH GIMDAL RUTATION 0.0000033
ELEVATION SINNAL RUYAT1O0N 0.0044128
DEAN DASE TRANSLATION 0.0000413
DEAM BASE ROTATION 0.0044128
L TIP INSTRUMENY PACKAGE TRANSLATION ~0,0001019
TIF INSTRUMENY PACKAGE ROTATION 0.0064128
MODAL FREQUENCY 5.91320S RAD/SEC
BASE TKANSLATION 0.4340323
ROLL GINBAL ROTATION 0.0017399
AZINUTH SINBAL RUTATION ~0.04970v9
° ELEVATION GINPAL ROTATION 0.0000120
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0.0000000

0.0000000
0.0000000
0.0000000
0.0000000

0.7208357

0.7208357
0.0000000
0.7208357
0.0000000

-0,0012932

=0,0012932
0.0000000
0.,0280927
0.0000000

=0.0000823

=0.000002%
0.00483438
0.0017931
0.0083438

0.2133037Y

0.1023534y
0.0000033
=3.2637730
0.0000033
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.. R
e e ’

A . -
S % S P UEPR I

. . . ) ’
. e et - e e . o ol y ) )
L TS I S VU TV IR ST S S P T T T T W PRI

z

0.0000000

0.0000000
0.0000000
0.0000000
0.0000000

0.0000000

0.0000000
0,0000000
0.0000000
0.0000000

0.0000000

0.0000000
0,1187833
0,0000000
0.1187833

9.0000000

0,0000000
0.007%5318
-0.0015743
0.00735a18

0.0000000

0.0000000
0.000v441
0.0123100
0.000v4841

0.0000000
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TABLE 2-1. {CONT.)

BEAM PASE TRANSLATION

En

EAn BASE ROTATION

{P ;Rsnuntnr PACKAGE TRANSLAYION
»

B
b4
1 NSTRURMENT PACKAGE RUOTATION

HODAL FREQUENCY 72.293426
PASE TRANSLATION

ROLL BIMkAL ROTATION

AZINUTH GIHMBAL RUTATION
ELEVATION GIMPAL KUTATION
BEAM BASE TRANSLATION

REAN BASE ROTATION

TIP INSTRUMEMY PACKAGE TRANSLATION
TIF INSTRUMENT PACKAGE ROTATION
noODAL FREQUENCY 11.29450
DASE TRANSLATION

ROLL GIMBAL ROTATION

AZINUTH GIMBAL ROTATION

ELEVATION GIMDAL ROTATION

PEAM MASE TRANSLATION

BEAN BASE ROTATION

TIF INSTRUMENT PACKAGE TKANSLATION
TIP INSYRUMENT PACKAGE RUTATION
HODAL FREQUENCY 20.443481
BASE TRANSLATION

ROLL GIMBAL KOTATION

AZINUTH GIMPAL ROTATION
ELEVATION GIMBAL ROTATION
BEAN BASE TRANSLATION

BEAM DASE ROTATION

TIP INSTRUMENT PACKAGE TRANSLATION

TIF INRSTRUMENT PACKAGE ROUTATION
NUDAL FREOQUENCY 23.29484
BASE TRANSLATIUN

ROLL OIMBAL ROTATION

AZ1KUTH GINDAL ROTATION

ELEVATION GINBAL RUTATION

BEAM BASE TRANSLATION

BEAN BASE ROTATION

TIF INSTRUMENY PACKAGE TRANSLATION
TIP INSTRUMEMNT PACKAGE RUTATION
MOLAL FREQUENCY $7.84480
DASE TRANSLATION

ROLL GINBAL ROTATION -
AZINUTH GINDAL ROTATION

ELEVATION BINDAL KOTATION

DEAM DASE TRANSLATION

BEAN BASE ROTATION .

TLIP INSTRUMENT PACKAUE TRANSLATION

TIP INSTRUMENT PACKAGE KOTATION
HODAL FREQUENCY S§.02358
BASE TRANSLATION

ROLL GINPAL RUTATION

AZINUTH GINDAL RUTATION
ELEVATIUN GINBAL RUTATION
DEAM DASE TRANSLATION

DEAN BASE ROTATION

TIP INSTRUMENT PACKAGE TRANSLATION

TIP INSTRUMENT PACKAUE ROTATION
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X

-0.8432107
0.0000120
0.5983837

-0.0000228

RAD/SEC

=0.0003123
=0.0001348
0.0000250
0.0602244
0.00032¢7
0.0602244
-0.0003338
-0.0453406

RAD/SEC

-~0.0302741
0.0184101
0.0024533

-0.0000814
0.0327604

=0.0000814
0.0370206

=0.0000700

KAD/SEC

=0.4039113
=0.0001958
0.0339743
=0.0002847
0.44670748
=0.0002847
0.3724887
-0.000383%

RAD/SEC

0.0017002

0.0001902
«0.0001598
=0.0416333
-0.002204?
=0.04814333
-0.0018192
=0.071909S

RAD/SEC

-0.1147710
0.0000152
0.0103723

-0,0074173
0.1344738

-0.0074173

-0.1921388
0.0371439

RAD/SEC

0.03770%4
0.0000524
«0.0034170
-0.0227311
=0.0500001
«0.0227311
0.04637030
0.3133033

Y

-0.0001104

-0.04770%98
=0.000054D
0.034354817

0.48Y1170

-0.350942
0.0000250
0.384746H4

~-0.0000090

=0.000%6412

0.0004400
0.0024333
-0.0081332
=0.,0043433

=0.0021334

0.0022417
0.,0339743
0.0012984
0.05242358

-0.4684157

0.5943744
-0.0001378
0.3291788
=0,0005378

-0.0330800

0.07301448
0.0103723
-0.0351070?
=0.1227977

-0.3424017

0.229v438
=0.0034170
«0.141333"
9.0400833

Z

0.0000000
0.0017397
~0.0085v47
-0.0143021

0.0000000

0.0000000
-0.0001%48
-0.08H4927

0.0000523

0.0000000

0.0000000

© 0.0194101

0.0009380
-0.7151111

0.0000000

0.0000000
-0.0001938
-0.0234142

0.0303842

0.0000000

0.0000000
0.0001902
=0.172917012
=0.0098474

0.0000000

0.0000000
0.0000132
0.10208474
=0.002712¢

0.0000000

0.0000000
0.0000524
0.2130347
=0.0013410
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2.3 Task 3 - Evaluation of ACOSS Control Methodologies.

2.3.1 Introduction. Recent technological advances in active damping
control techniques applied to Large Space Structures (LSS) include Lockheed's
Low Authority Control/High Authority Control (LAC/HAC), TRW's Positivity, and
General Dynamic's Model Error Sensitivity Suppression (MESS). Each of these
techniques, developed under the DARPA ACOSS program, incorporates a different
approach to the control problem.

.

Each of these techniques is described in a similar format in an attempt
to enhance understanding and to aid in comparison. A flowchart form of each
technique's control law design procedure has been developed by Control
Dynamics and 1is presented. This form will provide an orderly, methodical
approach to understanding the development of an active control scheme. This
approach is useful when first learning to apply these seemingly complicated,
multi-faceted design tools. It provides a means of comparison of the various
techniques in that the complexity of implementation, ease of understanding, ‘
and practicality can be readily observed. Each of these qualities is of 1
considerable importance, especially when contemplating their application to |
control of complex, high order space structures. 4

L

ll 'I
®,. ..

The numerous problems inherent in LSS control system design include the
following:
Inaccurate structural models. ]

(a) modal truncation - approximation of an infinite dimensional
system by a finite dimensional model

(b) inaccurate knowledge of modal frequencies and mode shapes,
especially high frequency modes

(c) poor knowledge of structural damping
Effects of including non-colocated actuators and sensors.

Spillover - effects of unknown high frequency modes on the system control
and observation.

Effects of including accurate sensor and actuator dynamic models.

Each technique incorporates a variety of distinctive concepts to solve these
° numerous problems associated with LSS control.

19
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2.3.2 TRW's positivity design.[6]

2.3.2.1 Objective. Assure stability of control system designs based on
inaccurate structural models. Design a robust control system with respect to
the following model errors - modal truncation and poor knowledge of modal
frequencies, mode shapes, and structural damping.

2.3.2.2 Properties of technique.

(a) No assumptions are made concerning dimensionality or linearity
of systems involved

(b) Low sensitivity to model errors
(c) Conservative design.
2.3.2.2 Overall approach. Design 1is augmented by pre-flight and
on-orbit data. All preflight information is incorporated in the initial pos-
itivity design. The key parameters are identified using on-orbit perfor-
mance. Improved knowledge of model parameters is used to "fine tune" the
system for optimum performance.
2.3.2.4 Positivity results.

(a) A negative feedback connection of a positive system with a
strictly positive system is stable.

(b) A LSS with colocated, ideal actuators and rate sensors is a
positive system.

(c) Embedding operations permit the treatment of non-positive
systems.

2.3.2.5 Basic theory. Positivity is a design method which has low sen-
sitivities to model errors.

2.3.2.6 Definitions.

(a) Positive real: the real part of a transfer function as a func-
tion of frequency is always greater than or equal to zero.

(b) Strictly positive real: the real part of a transfer function
as a function of frequency is always greater than zero.

6. "ACOSS Eight (Active Control of Space Structures) Phase II," TRW,
Sponsored by Defense Advanced Research Projects Agency, Report No.
RADC-TR-81-242, September 1981.
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[j 2.3.2.7 The TRW positivity design procedure applies the positivity theo-
[~ rem to LSS control system design. The theorem imposes restrictions of posi- e
- tive realness and strict positive realness on the plant and controller, and S
u this guarantees an asymptotically stable system. . o

The two basic design steps are:

Step 1 Assure plant (LSS) is positive real.
Step 2 Design controller that is strictly positive real.

Apply Positivity for Control 'q
System Design S
Positivity Theorem: System S is asymptotically - j
stable if one of G or H is strictly positive e
real and the other is positive real. E
CTLR PLANT o
q
rt 5 H(s) FEE o1 6(s) y(t) |
< -
Sys tem .
S . 1
o
_11
) 1
STEP 1: Assure that plant G(s) , ‘»
(LSS]) is positive real e
STEP 2: Design controller H(s) RESULT: System S is s
) to be strictly positive asymototically ®
real stable ik
< note: STEP 3 is added if embedding is used S
o
STEP 3: Ensure embedded controller ;
remains strictly positive ]
' after embedding R
g °
: ] -
STEP 3a: [ STEP 3b: ] o
“0" embedding design "0" embedding design o
‘ via f\:dersongTe:t s ‘E;"‘g pgsn':\(n;:ytplo; tand S
- i redesign H(s) to w/stan ]
° (use pre-fb compensation) B embedding) .
.'f_‘.}
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The positivity of a system’ is determined either in the time or frequency
domain. Of course, knowledge of the plant is necessary to calculate its posi-
tivity. The time domain test uses B.D.0. Anderson's positivity criterion. [7]
Application of this test results in the observation that the transfer matrix
of the LSS is positive real if ideal, colocated actuators and rate sensors
are used. A disadvantage of this test is that inclusion of the actuator and
sensor dynamics with the LSS makes it difficult to apply. The frequency
domain test incorporates a positivity index - a measure of positive realness
of a system. The frequency domain test has the advantages of obtaining ex-
perimental frequency response data and of easily including actuator and sen-
sor dynamics.

Determine positivity of
a system such as G(s).
[6G(s) = square matrix

[ 1
Time Domain Frequgncy
(8DO Anderson) Domain
v ¥
G(s) Description Define Positivity Index, &(w)
- - * -
G(s) = C(sI-A)"'B + G(=) 6(w) = A (4(6(5w)+G (Juw)]}
where where A in{°} denotes the
x = Ax + Bu minimunmei envalue of {-}
y = Cx + G(=) " e )
(Assume G(=) is finite)
‘L ! no \
Test for G(s) Being RESULT: Is 6§(w)20 for all w
Positive Real G(s) is not ves
Does P exist such that positive real A -
P is a symmetric, positive y no | Is §(w)>0 for all w
definite matrix and do wo
and L exist so that: no yes
i) PA + ATp = LT \
ii) onwo = G(=) + 6'(=) RESULT: RESULT:
cesy T G(s) is positive G(s) is strictly
iii) C = PB + LW, real positive real

."-
JOPAPLINT T NN

.
o,
R

&es 4 \

Does P exist such that

P is a symmetric, positive no
definite matrix so that:
PA + ATp = -Q yes

and Q is positive definite

7. Anderson, B.D.0, "“A System Theory Criterion For Positive Real
Matrices," SIAM J. of Control, Vol. 5, No. 2, pp 171-182, May 1967.
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An apparent shortcoming of the positivity approach is realized if the
plant is determined to be non-positive, since the theorem requires a positive
plant. However, a design tool found instrumental in establishing the positi-
vity of a non-positive system is operator embedding. Through selection of an
appropriate embedding operator, the embedded plant becomes positive, and thus
satisfies the requirement of the first step.

Step 1 in positivity design.

If the plant G(s) is not positive, use D (parallel) embedding theory to
obtain a positive G(s)+D(s). The embedding transformation is purely mathe-
matical and is not implemented in a physical sense, but it may impose con-
ditions on the controller which are implemented. The effect of D embedding is
to decrease the gain of the controller. Therefore, the controller H(s) must
be very stable and positive initially so that the D positive feedback loop
does not destabilize it. (Note: another embedding technique, F (cascade)
embedding, also exists, but is not used in this case)

23
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STEP 1: Assure Plant G(s) Tl
is positive real SRS

L

yes Is plant (inclusive of A and S dynamics) — e

l positive ? (Recommend frequency domain test) ¥
Proceed to na R
STEP 2 . z .4
this situation Use operator embedding to o
appears only establish positivity LIRS
for ideal, T
colocated R
A and S L]

D embedding - -
H G _
N W s K PO |
H G x H ? G 1
- L K " ‘ .
| VLo Wi Lo - o
'__--,_ol________' L
oriainal svstem ] embedded System <

v .
Select D operator: B
G(s)+D(s) is positive real

Define positivity index of G and G+D
- GG(m), SG+D(w). Calculate §(w).

Desired Result:
GG"’D(m) >0 Y we [0 |¢)

I

. D operator selection = G(s)+0
being positive real

D(jw) = d(jw)- I
Choose d(jw):
Re [d(jwj> -cSG(w) \'s wE(O )

RESULT:
G(s) is positive real

24
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Step 2 in positivity design.
The controller is designed using Linear Quadratic Gaussian (LQG) con-

troller topology and by applying optimal control and estimation techniques. .

In addition, the positivity.criterion is applied to produce a strictly posi- -

tive real controller. e
J
°

-

o

i
|

# . : E—
r 'V". . e .
PO\ ST
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Ko

STEP 2: Design Controller H(s)
to be strictly positive real

Use LQG controller topology
8

---— € - — - -~ — -
[ < A
- X

C

(4
State equations: w/o Bcloop

A A

X, = (I’«C-G‘;Cc)xc + ch
= A u(s)

u=K.x = K

ccC Q (S) C

QC(s) -1 A
—ﬂ?)- = (SI - I‘) GC [ = AC-GCCC

H(s) = !1§%-= K.(sT - T)7'6,

<

Sej— (s1-A)7 SefR }—i—s

Solve for estimator gain matrix, Gc'

(use steady state Kalman filter gain
solution). *

rry
f

T——

Apply Anderson's positivity criterion
so that H(s) of controller is strictly
positive real:

1) Solve for P:

PF + I'P = -Q

Q is any positive, definite,
symmetric matrix

2) Solve for K_:
T c

Kc = PGC
3) Add BC Loop
Bc = Gc

¥

RESULT: H(s) is strictly positive real

b i i el o £
. P N
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Step 3a in positivity design. B

If embedding is used to assure a positive plant, it is necessary to com- =
pensate for the effect of embedding on the controller. While contributing - R
positively to the plant, the embedding operation contributes negatively to |
the controller. Implementation of a pre-feedback loop around the controller ’
eliminates the negative effect of the embedding operator or the controller.
(i.e. the pre-feedback ensures that the controller remains strictly positive
even after embedding).

STEP 3a: D embedding design
via the Anderson Test

~~
[}
. A
R AR A
"N ‘A_L‘._LA!"‘J'JJ FI

Implement pre-feedback to create
new controller that is positive
even after D embedding wraps a
+6°I feedback around it.
. -
_____ o]
. ‘h".-_‘-l
. I y
2 > . f
( I ‘ R
implemented 4 f’
~ T controller e
| -
l B . . »‘-
I embedded ®
{controller .
|
T .
D operator o
* e
¢ Define 6 > -6 . > 0 e
- 0 min _ -
: Implement pre-feedback: : RESULT: -
Wrap - § 1 feedback around System is asymptotically stable.
positive controller.
¢ .
27 .
° 0

-----------



Step 3b in positivity design.

Determine the positivity index & («) and choose 8o for D operator. Usin
the posjtiv1ty.plot, predesigq the controller such that the controller witg
loop gain remains strictly positive. The positivity plot is a plot of closed
loop gain and phase as a function of open loop gain and phase.

STEP 3b: D embedding design using
the positivity plot -

3 Compute &(w)

4 Choose 60 > '6min
[

¢ |

Draw positivity plot
:
D

positive fb system

CL gain and phase of a
positive fb system
as a function of OL
values.

¥

Ensure that controller H(s)
w/ loop gain 501 lies

w/i *+ 90° CL phase
region of plot

Fr','_'.',',
i B o

SrAA Flata

N v
. RESULT:
'. System is stable
28
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Another method of applying positivity to the design of control systems
is "D embedding with frequency domain precompensation.” To apply this
method, a full multivariable linear frequency-type design is performed to
determine the precompensator M(s). The design involves extension of the

. " N " “' . e
C . . B '
Al s J’l

classical Nyquist/ Bode approach to the multivariable case. [8] It incor- —
porates the examination of the characteristic gains of the open loop plant
(or precompensated plant) transfer matrix. Then, D embedding is applied to
ensure positivity of the precompensated plant.
D embedding design combined with : i

frequency domain precompensation

v

Use multivariable freq-domain type .;
design to determine cascade ‘
precompensator M(s). [i.e. M(s) is
designed for perf. and desired high-f
roll-0ff.] 4
controller precompensated 4
""" | plant B
i il
: M| 6(s)|—
' i I
- - - - . (= - = = - f ‘
. e - m e 22 ®
]
Determine D operator to make 1
precompensated plant positive : .‘
1) Find 6(w) of precompensated R
plant. ﬁ
2) Choose D = 601 where
8 > ~Smin :—-.‘j
A
Design "H" part of CTLR RESULT: | 3
H = _61_ Stable System _ ‘
0 o
8. MacFarlane, et. al., "“Complex Variable Methods for Multivariable i‘
Feedback Systems Analysis and Design," in Alternatives For Linear
Multivariable Control, NEC, Chicago, I11., 1978. °
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2.3.3 TRW's positivity design for non-colocated systems.[9]

2.3.3.1 Objective. Extend the positivity approach to enable control
design of non-colocated systems. The theoretical efforts are:

(a) Find design conditions for a non-square plant which, when
imposed, result in a stable system. . :‘i

(b) Develop a procedure to make a non-square plant square (i.e.
squaring filter).

Non-colocated is defined as being non-positive and/or non-square (an -
unequal number of inputs and outputs). The property of non-positivity is MR
handled as it were in colocated control (through operator embedding) and is PR

¥ not a limitation of the positivity approach. However, the property of being RS
(' non-square is not considered in the initial positivity design approach (ACOSS ST
' 8), and was investigated later (ACOSS 14). The resulting approach to non-
colocated control is twofold; it may be handled via a squaring procedure or
via a stability ensuring design condition for non-square systems.

®

(4.
O

* SRR

° | " '.1

9. "ACOSS Fourteen (Active Control of Space Strucutures)," TRW, .

Sponsored by Defense Advanced Research Projects Agency, Contract No. -

F30602-81-C-0194, November 1982. j

@ .?
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(a) Find conditions required for non-square plant to ascertain

{: stability.
;‘ The conicity theorem is applied to the system to provide a stability en-
" suring design condition for a non-square system. The positivity theorem is e
found to be a special case of the conicity theorem, which has no limitations ST
{ to square systems. Two types of operator embedding, parallel (D) and cascade .
(F), are employed in the derivation of the design condition. The condition Coe
is then applied to a non-square system to generate the control law. )
Conicity theorem: if the open loop gain of GH < 1, then the closed i .l
loop system is stable R
- Applying conicity results in the imposition of two design conditions on o
each of the possibilities inherent in non-square plants (i.e. # outputs > # -y

}—e inputs or # inputs > # outputs).

Stablzl ity ensuring design
condition for non-square

olants ,
¢ ';
ﬁ
! ) =
1 15t condition of Conicity _ ?
- - -1 r———"-=-=-=-=-- 1 ]
(4 IGl=1(c+0)F ] <1 | — ) e
[ 2" condition of Conicity 2 l F G — L }
. -1 - _a i
”Hl, =“ F(1 - HD) lH“< 1 | 1
F‘ Apply condition 1: : 0 :

|°. Jo+ ol <|Fll _CIIIIZII:o:ot
g (true system G differs 1 I !
: from nominal system-D F H
- by at most"F]) ~ ! ta
- If both conditions are : 0 . o
9 satisfied, then GH and , :
{ GH are stable. - —— - =
b H
I
e -
r [more inputs than outputs] [more outputs than inouts |
[
[ l
[
°
L_ 31
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more inputs than outputs

L

Partition plant G and controller H into
colocated and noncolocated parts.

G = 'GI:GZ] 6, = colocated
) G2 = noncolocated
FHI H1 = colocated
H =<~
H H, = noncolocated
2 2
{
(S, 16,1

=]

b

G = [GIEGZJ F

0= [01302] H

Substitute into:

Apply Z"d condition of Conicity:

[F1i2]

]

JF(I - HD) 'H|l< 1

¥

Use 22 norm to evaluate expression.

Apply Parseval's theorem.
Resulting condition;

*
A {(Flﬂ1 + FZHZ) (FlHl + FZHZ» <

nax

*
Ain {(1 +H,0, + HZDZ) (1 + Hlol + Hzozﬂ

171
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RESULT: Stability
ensuring design
condition
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T

)

colocated an

G

[}
D
1
1

Partition plant G and controller H into

d noncolocated parts.
colocated

[ 2]
noon

noncolocated

H, = colocated
= noncolocated

X
[l

r(Hl  Ho)

Apply an
|— -~

G = |z

o
[}
ol

1
L2

condition of Conicity
r

x
"
x
pe of
n
——d

Substitute into:
fF(I - HD) <1

d

Apply Parseval's theorem.
Resulting condition:

Use £, norm to evaluate expression.

r * '
B Bl R R
i I

max) |FH Py | [FoH) ! FH,

- ' * '

o [[r mg]fie oy KD, }
min Hzol,ltﬂzbz HZDI: +H202

33

. SULT: Stability
ensuring design
condition
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(b) Basic outline for control of non-colocated systems using
squaring filter.

. The squaring procedure involves design of a squaring filter through . ®
which a non-square plant is made square. After establishing a square plant, -
the design procedure continues as colocated positivity design. )

;fj
9
STEP 1: L
Design K so that: :"-j
1) Performance is enhanced. C?

(i.e. discriminate against modes
which don't influence performance

and in favor of modes which affect y
performance most)} ;
2) Relative stability is maximized. ‘ ﬂ
(system as close as possible to _ .
a positive system) RO
.

STEP 2:

Design controller G_(z) using the
positive system.

A a4k LS

RESULT: CTRL PLANT
+ ‘
— Gc(z) | — Gp(Z)

..
i@

K a(z)1

c ¢ -

K(z) H(z) = Gc(z)K(z)
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The squaring filter can be designed in either the time or frequency do-
main. In the time domain, a constant squaring matrix is determined. A dis-
advantage is the procedure may require a high number of sensors if many modes
are to be controlled. In the frequency domain, the squaring procedure is
separated into three steps:

1. Design the d.c. gain of the filter, Ko
2. Design the frequency dependent portion of the filter, alw)
3. Approximate resultant filter by realizable discrete-time filter afz)

In many frequency domain cases, a constant K=Ko gives reasonable results and
no filter is required.

STEP 1: Design K

Time Frequency
Domain Domain
Is n. = max(r,m) ? Make the noncolocated
r = ¥ sensors ‘ves system positive by
m = £ actuators A using a constant
n =  modes to be squaring matrix, K.
controlled - . * _
kT = [(c")]%s"
no .
y
, MO time domain test
Isn_>r? doesn't handle
this possibility

yes .
K becomes a function

v ' A of frequency.

Obtain a squared-down

system which is close

to a positive square STEP 1A: Find dc value
system. of K matrix, Ko

i.e. system with good
stability characteristics l

*
k=(c)'s STEP 1B: Find frequency
dependent part of K, a(w)

[+ denates pseudoinverse]

)/
Proceed to STEP 2
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q
. Step la) Find Ko

>
h
),
S
-
s
i
P
3
b
\
3

-

E"

STEP 1A: Find K_ '

’
R T
L LRI
D .
A ) .
. A!‘A.JAML,LA

S, Y

K, = K(0)

-ty

n
G_,(O) - T‘¢K(si)¢x(aj)
R R L w,? o
K =9 K=1 K ° N 4
0 G{0) - e
2 '%ii;~€
- 4ylag) L

o
Hwn

r =>:n‘\/"’l<'~xz+ Lyt iz
i "

k1 K T
RO =’.diag [l‘jj-] _“.]

This equation has many solutions. Choose solution
with minimum norm using singular value decomposition.
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Step 1b) Find K(z)

STEP 1B: Find a(s)

K(s) = a(s)Ko

Find a(wi) to scale resultant transfer function

2 2
9; - % Yoy Y4
alw;) = 5= g; = »
W
1

Find positive singular value of transfer matrix
a[K(O)-G(wi)J at the frequency w; .

Approximate series of gains a(w Y, i =1,...,n
by a realizable filter a(z).

- )

Resultant squaring filter
K(z) = u(z)I-Ko

Proceed to STEP 2
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2.3.4 Lockheed's LAC/HAC design.[10]

2.3.4.1 Objective. Develop a technique that eliminates instabilities
created by spillover. Summarily stated, spillover is the interaction of the
controller with unmodeled modes. The control design must cope with poorly
known high frequency modes by not destabilizing them while controlling the

Tow frequency modes.

2.3.4.2 Properties of technique.
(a) Robust performance
(b) Suppression of spillover

2.3.4.3 LAC/HAC approach.

(a) HAC - modify the structural mode shapes and modal damping with
the HAC estimator and control law.

(b) LAC - incorporate LAC control law to reduce spillover insta-

bility created by HAC controller.
LAC design is based on a higher order model than HAC design.

2.3.4.4 Theory: LAC/HAC is a design method which meets the objective.

2.3.4.5 Definition.

(a) Spillover: interaction of the controller with unmodeled modes

2.3.4.6 Lockheed's Low Authority Control/High Authority Control (LAC/
HAC) design procedure applies a two-level approach to LSS control system
design. The first level involves HAC design, which incorporates a narrow
band and high damping to meet performance requirements. The concept of using
a frequency-shaped extension of the LQG method 1is presented. The second
level involves LAC design, which incorporates a wide band and low damping to
eliminate spillover induced instabilities.

10. "ACOSS Five (Active Control of Space Structures) Phase IA," Lockheed
Missiles and Space Company, Inc., Sponsored by Defense Advanced
Research Projects Agency, Report No. RADC-TR-82-21, March 1982.
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'? Implement the following four steps to design a LAC/HAC controller: s
: 1) HAC design . AR
2) Spillover evaluation L]
§ 3) LAC design —-
4) Stability, performance evaluation o
=
LAC/HAC design | .4
two-level approach S
-
Y
SN
\ !
STEP 1: High Authority Control (HAC) ]
Design. (Narrow band, high damping) 1
Use frequency-shaped extension of

HAC MODEL UNCERTAINTY IN

LQG methods S
L
BANDWIDTH HAC CONTROLLER

2 — DUE TO MODES

OUTSIDE HAC o
DAMPING HAC RS
RATIO / //BANDNIDTH ‘-;

FREQUENCY

: STEP 2: Evaluation of Spillover.
b Effect of HAC controller on modes
-9 not used in control design may be
4 destabilizing.
¢

{ continue )
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( continue )
v =
STEP 3: Low Authority Control (LAC) - -9
Design. (Wide band, low damping) S
solves destabilization problems ER
created by HAC. N
' DEL BANDWIDTH -]
DAMPING f=” LAC__~~.
RATIO | FREQUENCY ]
.
£
-
°
p STEP 4: Stability and o
- Performance Evaluation
Lad . .‘
| .
4 o,
- Result: Stable system which handles wT
{ Spillover (i.e. interaction of the
g controller with unmodeled modes)
» !
- OAMPING INTEGRATED 2
[’ RATIO //HfC/LAC DESIGN R T’!
t_ SUNCERTAINTY REGION Z*?
- o
$ FREQUENCY E
¢ U/
- 40 x
- -
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Step 1 in LAC/HAC design.

The HAC design uses a standard LQG controller and applies optimal control
and estimation techniques to develop the HAC control law. The concept of
frequency shaping the performance index (PI) may be applied to: 1

i) Avoid spillover - high frequency spillover, in the case of LSS C
ii) State estimation - minimize the problem of interaction of unmodeled ]
high frequency modes with the estimation of low frequency states o

jii) Disturbance rejection - minimize the effect of a disturbance at a .‘
particular frequency {

Control Model of System .
ic = chc + ch PerformanceTIndex
y = Hx d=limdf xTax + oTu at

cc Tow 170 ]

L
)
,'V-J

Find Optimal Control Gain Matrix, Cc

1) Solve algebraic Riccati equation 2 '1.:4
for R o,
0 .
FTR +RF -RGB™'.R +A=0
co ‘oc ocC c'o
2) Solve for Cc '
= a1 T )
Cc B Gc Ro "
]
2 _'j
HAC Control Law )
=C A ‘-:1
u=teXe 3
=
"~
L

4 °
41 3
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Find State Estimator Gain Matrix, K. ___...

(Use steaay state Kalman filter sol’'n)

State Estimator Equations:

A A K

x.=FR +Gu+ K(y - HCX.) :

1) Find P,Q .
A

v = input noise vector ]

w = measurement noise vector

E (v(t)vI(t + 1)} = Q &(x)

3 (w(t)wT(t + 1)} =P &(1)

2) Solve algebraic Riccati equation
= 7 - To-1 T

0= F 'R+RF, - RH_'PTIH_R + G_QG_

3) Solve for K

= RH TPt
K RHC P
h Apply frequency-shaping methods S
] in the following three areas as A
necessary: C _f
1) Spillover Avoidance -

RN
'._ 2) State Estimation S0
3) Disturbance Rejection -8,
r
L

. Spillover Avoidance State Estimation Disturbance Rejection o
[ in HAC design in HAC design in HAC design -
.‘ v 3
O ‘
¢ “:" ‘i" °
-

e
i — - @
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Frequency shaping the performance index to avoid spillover.

The fundamental idea of frequency shaping is to provide minimum control
authority at the unmodeled modal frequencies. The state and/or control
weighting of the performance index are modified to be appropriate functions
of frequency. An increased penalty in the LQG cost functional is placed
where less response is desired. For example, to reduce high frequency
spillover, the state weighting is modified to be a decreasing function of
frequency and/or the control weighting is modified to be an increasing func-
tion of frequency. The objective is to penalize the low frequency states (to
impose limitations on state magnitude) and/or to penalize high frequency
control power (to avoid placing controller energy at high frequencies).
Additional states must then be defined to implement the frequency shaping and
are included in both the control law and performance index.
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P P

~
State Heighting

Inject mnimum control power ati
natural frequencies of unmodelc

Control Weighting

®.. . ... 9. . . . .®. . ]

. modes. Modify either state ‘
Ajw) weighting or control weignting B(jw)
of performance 1ndex
lype of J = lim j(x Ax + u Bu) dt Type of
spillover ? T-om T spillover ? ]
—
—3 i
high- [particular particular
frequency mode mode ®
i y
to reduce high- to avoid to avoid high-
frequency spill- exciting exciting frequency
over, modify a particular a particular J
A(jw) to be a mode at w, mode at w, ®
decreasing ]
function of o reduce high- )
frequency frequency spill-
i.e. A(jw)= - over, modify
[i-e- Al o2 ) B(ju) to be an J
N . . .
increasing function :
of witw ? ﬂ
¢ fi.e. B(ju)= B]
Y - wo ]
Modify A(jw): Modify B(jw): p
A(Jw)=(w? -~ w_2?)A B(jw)= ®
0 (mz_moz)z
l
> _ < _ |
Additional states, x are Additional states, u are o
defined to implement defined to implement e
frequency shaping(STEP 1A) frequency shaping(STEP 1A) R
Perf. Index becames Perf. Index becomes ji
T 3
T, s T , °
hmT[ xAx+u8udt J-]rlr:;[o Ax+uBudt ' :
1 i
Control Law:_ “
u=Cx+ Cx . :
l 2 RESULT: Spillaver has , o
L been avoided :
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]
State estimation in HAC design. -

Problem: Estimation of low frequency states when high frequency modes are
#r not modeled.
4

Fr:equency shape R (while Q remains unchanged), since all errors associated
with modal truncation are incorporated in measurements.

| ©

»e
[ °
State Estimation i
in HAC design !
'1
V. J
F .
Modify R so that R(jw) is T
an increasing function of -
frequency. wz+woz .1
[i-e. R(j)= R] 1
moz _ 1
]
L)
]
Define additional, states, X ]
and y (equivalent to adding ]
V) to implement frequency- ;
shaped R. (STEP 1A) .
.
R
. R
o)
RESULT: Solved problem
of model invalidity at ]
high frequencies.
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' Disturbance rejection in HAC design. ."}
: Problem: Minimize effect of disturbance on output y. The disturbances attenu- o
‘ ated in this type of disturbance rejection include disturbances at a partic- -
& ular frequency, wg, _9
4 L
i Include additional term in performance index, Jl. 1
Ie © e
- Co
B Disturbance Rejection 3
! in HAC design -
b :
)
te ,L 1
{ Inrlude J1 in perf. index:
{ T T
| J = llm J + x Ax + u'Bu dt 1
¢ °
= Ta UNE -]
t where J1 (uz-_1)2 y yy y A(jw)y :
i g
1
: A(jw) = ——A
:.c (w2-22)2 Yy _ .4
. note: output penalty goes to = at w c;}
-
t L o4
- e
- Implementation requires 3
Fi definition of aaditional °
- states, X. (STEP 1A) :
\ ]
; The perf. index becomes: }
_ T ey
- J = lin[[ xTA X + XTAx + uT8u dt :
i 1
| 1 s
Control Law: 4
= X L
¢ U= Cix o+ Cox "
| T 5
[ RESULT: Minimizea effect of )
. disturbance on structure, .1
[ i
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Step la in LAC/HAC design.

Define additional states required to implement frequency shaped performance

index.

STEP 1A: Z
Definition of additional .
states needed to implement o
freq.-shaping of LQG cost e
functional. 3
1 -9
S )
State weighting Control Weighting ’
Alju) B(ju) ]
Y
1
Find Pl(jw): Find Pz(jw): ‘
) * . ) . . ) °
Aljw) = Py (jw)P, (juw) B(juw) = P,y(jw)Py(Jju) .
\ 4 \
Define aaditional Oefine Aaditional ]
states x: states u:
Pl(Jw)X = X Pz(yu)u = u
Control Law: Control Law: )
- defined in above 1
u = Cx + Cox step |
Performance Inaex: Performance Index: v—»“
T : T T -
J = lim l:[ ETA; + uTBu dt J = lim%{ xTAx + uT8u dt J
oo T/ T+ @ _
.
RESULT:
definition
complete =
.1
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Step 2 in LAC/HAC design: Spillover evaluation.

Test HAC control law on large order model.

STEP 2: Spillover
Evaluation

Test the HAC Control Law on the
evaluation model of system

(Evaluation model is one of large
order - i.e. 40 or more modes)
The degree of spillover due to
HAC will be used to determine
the LAC damping ratios needed

to prevent spillover instabilities.

T——

Step 4 in LAC/HAC design:

v
"

ﬁ..var‘r\““r*' " Vo
. [N Ve o

()

e

. SN oun aun ane i oun s ons g

LI W W W WA W GOur o

l

Proceed to
STEP 3

Test HAC/LAC control law on large order model and examine output.

STEP 4: Stability and
Performance Evaluation

l

Stability and performance evaluation.

Test combined HAC/LAC Control
law on evaluation model.
Examine closed-loop dynamics:

= +
Xg sts rsw
y= sts
s denotes closed-loop system
w = disturbances
y = vector defining performance

Stability is evaluated by
computing eigenvalues of Fs.
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Step 3 in LAC/HAC design: LAC design.

The LAC design procedure develops a LAC control law which generates
closed loop system root shifts. The introduction of the LAC control system
produces root shifts into the stability domain. The root shifts, which can be
predicted algebraically, are used to derive the fundamental root shift for-
mula of LAC design. A cost function involving predicted root shifts and
desired root shifts is minimized to determine the LAC control law.
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SIEP 13-
LAC Design

The determination of the matrix
of the damping gains, C (where

u = CLy) is the synthesis of LAC
systems. CL = [Car]

L

Find (dln)p - predicted root shift

Derivation of LAC formula to algebraically
predict root shifts produced by introducing
the LAC Control System.

System Equations: .
Dynamics : x = Fx + Gu Closed Loop Dynamics
Sensors : y = Hx . _

Controls : wu = CLy x = (F+ GCLH)X

b

For small controls, CL

GCLH = dF
The dynamics become:
x = (F + dF)x

*fundamental Root Shift Formula*

- A, R

A =k -);: Car"an L

xn = nth root of F

dA_ = root shift corresponding

to df

L ., R = corresponding left,

non right eigenvectors
of F
[ie. FTL_=a L, FR = AR
¢ nn' “n nn]
Aa T R &
¢, * G'L, ¢, = HR_
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continue .
LR

Are sensors and actuators complementary, no N
and do sensors measure rates, and is the
structure undamped ?

y Y& ' J
. Root Shift formula reduces to: e
3 = lsor ar¢an¢
A th .
L; ¢an' épq = Values of the n~'mode i
:‘ shape at actuator a, sensor r. ¢
_ v | ]
4 Are sensors and actuators -——-)(no )
i colocated (a=r) ? ]
yes o
4 ¢ v L )
Root Shift formula reduces to: -
= - - 2
- d1 %a%n = E Ca‘ban T
h note: root shifts toward left X
- of jw-axis if all gains are . e
& negative - - L 1 :
= v
- Determine C, : =
F.: CL is found by minimizing the " : .1
cost fgnctlon 2 ; .
) et wn[(dxn) - (dx )o] + IC
L (thn)D = desired root shift ]
. W, = modal weights N .:
note: (dln)o. W, are adjustable i
synthesis parameters
. y
f. Elements of matrix Cere calculated - _.4
E‘_ by solving the linear equations: ' -
=0
: ocC
° L °
& 1
2 51 ]
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2.3.5 General Dynamic MESS design.[11]

2.3.5.1 Objective. Stabilization of control model, attenuating effects
of control and observation spillover, and model errors caused by truncation
of known high frequency residual modes.

2.3.5.2 Overall approach. General Dynamic's Model Error Sensitivity
Suppression (MESS) design procedure involves an extension of optimal control
theory with standard LQG controller topology. MESS uses the performance
index to constrain sensitivity to modeling errors.

2.3.5.3 Properties.

(a) Algorithm only provides solution to the problem of known model
truncation

(b) Low sensitivity to modeling errors
2.3.5.4 Definitions.

(a) Control spillover: excitation of uncontrolled modes by con-
troller

(b) Observation spillover: sensing of uncontrolled modal responses
by observer

11. "ACOSS One (Active Control of Space Structures) Phase I," General
Dynamics, Sponsored by Defense Advanced Research Projects Agency,
Report No. RADC-TR-80-79, March 1980.
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[
Model Error Sensitivity Suppression.
The design procedure consists basically of the 4 following steps:
1) Design optimal regulator -
2) Design state estimator -
3) Evaluate spillover -
4) Apply MESS algorithm and redesign regulator, estimator 1
l
4
*
.1
]
“ J
J
¢ )
"
K
C e
o
‘ -
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MESS
model error
sensitivity suppression

YT YW T
= T .I' A
Y

/
STEP 1: Design optimal regulator e
with zero spillover suppression. - 4
[this checks severity of spillover -9
.. prob]em] )
STEP 2: Design state estimator
‘ with zero spillover suppression. .1
! STEP 3: Test controller/estimator o
- on design model. Evaluate spillover. IR
3 1 b
; no B
Is spillover a problem ? e
(] lyes o
[ Apply MESS Algorithm .
- 1
- 1
- - J
C Y e
3 Redesign regulator ]
using restructured 7
3 performance index. -
f ]
- ¥ o]
I~ Redesign estimator using ' o,
a restructured performance T
index. (Apply STEP 2)
[} ! !
E_‘ RESULT: Design with
[ ' Jcceptable spillover ]
a level :
' ’ .:
f' 54 -
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Step 1 Design optimal regulator.

Standard LQG control methods are used to design the optimal regulator and
state estimator. Using the alpha-shift technique, the selection of PI
weighting matrices is reduced to a choice of scalar parameters.

STEP 1: Design optimal
requlator.

System Equations:

Linear System: x = Ax + Bu
Performance Index: J =‘L xTQx + uTRu dt

\ _ ey
Choose performance index weighting

matrices Q and R. The alpha-shift

technique may be employed to reduce
selection of Q, R to choices.of .

scalar parameters.

y

Find optimal control gain matrix, K
" -suych that the control law becomes

A
u = Kx

1) Solve algebraic Riccati equation
for P :

ATP + PA - PBRIBTP +Q =0

2) Calculate gain matrix, K

T

K = -R°'8 P

Y

RESULT: Control Law
has been designed.
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Step 2 Design state estimator.

Standard LQG control methods are applied to design the state estimator.
The system model is then tested for spillover and if spillover is a problem,
the MESS algorithm is applied.

STEP 2: Design state ‘ 4
estimator .. '.f
.
]
State Estimator Topology: .4
1
1 ° ‘
+ A ‘J
+ + X u ¢
y A,Q G (sI - A)7? > K > ]
P ' 1
C [ )
-
X |
. v = input noise
§tate Estimator Equations: w = measurement noise °
%= AL +Bu + Gy - %) E (v(t)v(t + 1)} = Q &(x) ]
. A
:* u = K E w(t)w'(t + 1)) =S &(1)
- o 4
[ ] ] [
E-—. Find state estimator gain matrix, G ’
L 1) Solve Riccati equation for P
- - ATp + PA + PCTs™icP + BGBT = 0
L 2) Calculate G 9,
b .
t 6 = pcls
L
o RESULT: State Estimator R
: desiqned. ]
| .
.‘:.1
b 56 -]
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A fundamental concept behind the MESS algorithm is to restructure the
performance index (PI). Initially, the PI is a function of controlled and
suppressed states, and the control vector. Singular perturbation is forced
in the suppressed state model, and the resulting expression is substituted
into the original performance index.

MESS Algorithm

I

Restructure the performance index

(LT T T
J -L X. chc + Xg sts +u

Rou dt

X-= X

c : ~controlled
Xs = Xsuppressed
where
3 = +
Xe Acxc Bcu
. .

X Asxs Bsu

A

Force singular perturbation
set is =0

- = - -l
0 Asxs + Bsu - Xg As BSu

- - -l -
Substitute Xs = -As Bsu into J
T T Tea -1yTg 4 -t
J-fo xe QX+ u [R°+Bs (As )O-sAs Bs]u dt

This is the restructured performance index.

l

RESULT: Restructured
perf. index found.
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The restructured PI is now used with optimal control techniques to redesign
the regulator and to determine the modified control law.

Al 000 A 2NN 2% Sath e A g
L T e
., L

i

S,

Redesign Regulator

-
N

Find Optimal Control Gain Matrix, K

o)

1) Solve algebraic Riccati equation for P

|
: s
aheabch .A_LJ ,

T _ T/a =1y T -1 “1o Tp o _
AP + PA_ PBC[RO + B, (A1) 0 A, Bs] B.'P Q= 0

;»! 2) Calculate K
_ Toa =1vTa 4 =1p T2 T )
s K= '[Rc + B (A 1) Q5A, Bs] B P ]
[ e
je .
3 o -
& RESULT: Regulator design o
¢ based on restructured @]
t performance index. 3
¢
A
A
2
|

T
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2.3.6 Conclusion.

2.3.6.1 The LSS control techniques discussed include Lockheed's LAC/HAC,
TRW's Positivity, and General Dynamic's MESS. Although each approach is
observedly different, each technique employs the same objective, optimal per-
formance when presented with an inaccurate plant model. Each technique
addressed the problem of the destabilizing effect of uncontrolled modes on
the system. TRW concludes that application of the positivity theorem to LSS
assures stability (i.e. system will not become unstable due to oberservation
and control spillover effects.). In addition, positiviity more indepthly
(than LAC/HAC or MESS) examines the problem of non-colocation and inclusion
of actuator and sensor dynamcis. Lockheed concludes that the LAC/HAC algo-
rithm eliminates spillover instabilities through the application of frequency
shaping. General Dynamics concludes that MESS solves the problem of known
modal truncation through restructuring of the performance index.

2.3.6.2 An orderly flowchart format of each technique's control law
design procedure is extremely helpful when comparing and considering develop-

ment of the control schemes. The flowchart helps one draw conclusions about
the practicality of each technique in the situation of LSS.
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tion of ACOSS Control Methodologies.

2.3.7 Activities Participated In and Conducted Relative to the Evalua-

During the February 1982 - February

1984 period, Control Dynamics senior personnel collaborated with counterparts

of other organizations at the meetings and conferences listed.

Their active

participation contributed measurably to the objective, in-depth evaluation of

control methodologies presented in this section.

2.

10.

Meeting Topic
. Organization

Power Spectral Density
Model
. Draper Laboratory

Stochastic Approach
to Model Development
. Lincoln Laboratory

JOSIE Program
. Draper Laboratory and
ITEK

Large Space Structures
Program

. Marshall Space Flight
Center

ACOSS Methodology
. TRW
. Draper Laboratory

VCOSS Methodology
. Lockheed - Palo Alto

VCOSS Methodology
. TRW

ACOSS Methodology
. Minneapolis -
Honeywell

Power Spectral Density
Model
. Draper Laboratory

Spacecraft Disturbances
. Control Dynamics

Date

March 15, 1982

March 16, 1982

March 16, 1982

April 30, 1982

June 2, 1982

June 16, 1982

June 17, 1982

June 29, 1982

June 29, 1982

June 29, 1982
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Location

Cambridge, MA

Lexington, MA

MSFC, AL

Riverside
Research
Arlington, VA

Wright-
Patterson
AFB, OH

Riverside
Research
Arlington, VA

Riverside
Research
Arlington, VA

Control
Dynamics
Participants

Or. Seltzer
Dr. Doane

Dr. Seltzer

Br. Seltzer

Dr. Seltzer

Dr. Seltzer
Dr. Doane

Dr. Seltzer
Dr. Doane

'AA.LAIA_J PR

a ‘4._".)'1"-'
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12.

13.

14.

15.

16.

17.

18.

19.

20.

21'

Meeting Topic
. Organization

Workshop on "Application
of Distributed Systems
Theory to the Control
of Large Space Struc-
tures"

. JPL

Guidance, Control, and
Dynamics Conference
. AIAA

ACOSS Phase II Final
Technical Review
. Lockheed

ACOSS Final Technical
Review
. TRW

LAMP
. ITEK

LAMP
. Perkin-Elmer

Structural Control of
Deployed Optical
Systems

. SPIE

VCOSS - I Final Review
Review
. Lockheed

VCOSS - 1 Final Review
. TRW

Guidance and Control
Conference
. AIAA

9th Strategic Symposium
. DARPA

Date

July 14-16,
1982

August 9-11,
1982

September 23,
1982

December 16,
1982

December 20,
1982

December 21,
1982

January 20,
1983

March 8, 1983

March 9, 1983

August 15-17,
1983

October 4-7,
1983
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Location

Pasadena, CA

San Diego, CA

Palo Alto and
Sunnyvale, CA

Los Angeles,
CA

Lexington, MA
Danbury, CN

Hughes Corp.
Los Angeles,
CA

Wright-
Patterson
AFB, OH

Gatlinburg, TN

Monterey, CA

T ——— P T—————r
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Control
Dynamics
Participants .
N )
Dr. Doane i
i
. @
L
Dr. Seltzer R
Dr. York &
o
P
Dr. Seltzer o
Dr. Seltzer
.1
1
Dr. Seltzer
Dr. Seltzer ]
e
Dr. Seltzer N
Dr. Worley ‘
E
o
Dr. Seltzer T
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2.4 Task 4 - Determination of Optimal Form for ACOSS Controller

2.4.1. Introduction. The determination of an optimal form for the
ACOSS model is the subject of the work presented here. The structural model
used was developed by Control Dynamics under the ACOSS/VCOSS program. The
emphasis on the control system design was primarily one of simplicity. The
idea was to keep the design as straightforward as possible and to increase
the level of complexity of the design as well as the fidelity of the model
as more knowledge of the control problem was determined.

The control scheme used here involves using the frequency domain design
tools to design a two loop digital control system. The initial design of the
inner loop is performed to design a tracking notch filter by phase stabiliz-
ing the unstable outer loop bending modes, and gain stabilizing all other
modes. After the inner loop is closed and cascaded with the outer loop, com-
pensation is then derived to stabilize the outer loop. This design technique
has shown that it is possible to retain an appreciable bandwidth while
suppressing vibrational modes and disturbances.

2.4.2 Control Law Formulation. The preliminary control law developed
for ACOSS model #2 1is based on one sensor actuator pair. For attitude con-
trol of the structure, a torque actuator was placed between the equip-
ment section and the optical truss. An accelerometer package is needed at
the equipment section to sense transliational motion. Finally, a sen-
sor is needed at the focal plane to detect errors in the 1ine of sight (LOS).
A planar modal of the ACOSS model #2 in the y-z plane is shown in Figure 4-1.
The input actuator in the model is a torque actuator located along the
z-axis midway between the optical truss and the equipment section. The
accelerometer measurement will be used to construct the inner loop notch
filter. ’

The block diagram of the control system for the planar model shown in
Figure 4-2 includes one disturbance input and one control input. The sensors
are an accelerometer at node 46 in the equipment section (inner loop)
and the focal plane error (outer loop).

The multi-loop control scheme has been applied in the design of control
systems for large flexible structures of the DARPA type. In the next section
the design technique is illustrated by way of an example.

2.4.3. Multi-loop Design Technique. The multi-loop design technique
developed for DARPA is illustrated here with an example. The block
diagram of Figure 4-2 will be used where the modal data 1is given in Table
4-1 (Figure 4-3).

The design procedure is initiated by computing the outer loop frequency
response and determining which modes are significant. Using block diagram
algebra and Mason's Gain Formula the uncompensated outer loop transfer func-
tion is given by
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N < ISOLATOR o
= S
2 2 / y - {
3 2.3 )2 —_— SOLAR PANEL -
[ e -~ CONNECTION POINT ;
e EQUIPMENT ®
- DISTURBANCE INPUT 10 SECTION 1
i NODE 746 -
ALL DIMENSIONS IN METERS o

NODE #37 (-4,-3,24) °

NODE 746 (-4,-5,-.3) = }

Figure 4-1. Y-Z Planar Projection of ACOSS Model #2 (Solar Panels Omitted).
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;}[GOL(S)]= ApAa Glc(z)'§4Gpo(s) GHols) F(s)} (4-1)

where

G11H21 G12H22 N Gpj + 2 H2 +2
F(s) = — * — + ]

3 3 i

2 2
1 s™ + 2zwpis + wni

where Ghol(s) is the transfer function for a zero order hold, Ap is the outer
loop gain constant, Aa is the inner loop gain constant, Gjc(z) is the z-do-
main closed loop transfer function of the inner loop between the output of

the outer loop compensator Gcg(z) and the input to the block labeled Aa, ¢ is
the modal damping ratio for each mode and is assumed to be 0.5%, wni is the
undamped natural frequency of the ith mode, Gyj Hy and Gyp Hp2 are the rigid
body modal gains for the outer loop, G1j+2 H2j+2 is the modal gain of the ith
bending mode of the outer loop where i=1, 2, . . ., N. The closed loop
transfer function of the inner l1oop is given by

1
Gicl2) = (4-2)
1 - GCI(Z):},[Gxo(s)]

where GIo(s) is the uncompensated open loop transfer function of the inner
loop, given by

G11H11 G12H12
n [G1o(s)] = Aa 3-{Gp1(s) Ghols) . +—— (4-3)

s2 s2

G1i+2 H1i+2

N
"

i=1 s + 2cwpis + wzni

and Ggp (z) is the inner loop digital compensation. The frequency response
of the uncompensated outer loop in Equation (4-1) was computed using the
sampled-data frequency domain computer-aided design tools and is shown in
Figure 4-4, The response shows that only the first bending mode (56.495
rad/sec) is significant. Hence, the inner loop will be designed such that a
notch occurs at the frequency corresponding to the first bending mode.
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Figure 4-4. Frequency Response of the Uncompensated
Outer Loop (Inner Loop Open)
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2.4.3.1 1Inner Loop Design. The frequency response of the uncompensated '
inner 1loop is shown in Figure 4-5. The response shows that the first and .
fifth bending mode basically determine the stability of this loop. The outer ) ']
loop response has shown that only the first bending mode is significant in )
that loop. Therefore, the compensation for the inner loop will be
designed to phase stabilize the first bending mode to preserve the peak so
that when it is closed a notch will occur at this frequency. The fifth
bending mode will then be gain stabilized. A two stage digital compensator _
that will achieve these specifications was designed using the direct z-domain y
analytical design technique. The compensator is given by o
Geylz) = Gg,,(2) - Gg,,(2)
where '5'
]
(z +1)? ' ®
Ge, (2) = > (4-4) *
31.25581 z" - 46.67205z + 19.41624
and j
6.0085z - 4.0085 U
Ge,,(2) = (4-5) o
8.9159z - 6.9159 .
The first stage is an underdamped second-order dominant pole compensator R ?
with a damping ratio of 0.6 and a break frequency of 40 rad/sec. It was , .1
designed to phase stabilize the first bending mode by contributing -120 -
degrees at a frequency of 56.495 rad/sec (the frequency of the first bending . :
mode). At higher frequencies the gain of this compen.ator continues to -
decrease and therefore serves to gain stabilize the fifth bending mode .
(198.554 rad/sec). The second stage is a digital lag compensator designed to Lo
provide sufficient gain margin at a frequency of 31 rad/sec. The frequency ) °
response of the compensated inner loop, magnitude and phase, is shown in 4
Figure 4-6. The response shows that the loop has two gain and two phase
margins:
GM; = 6 dB @ 32 rad/sec ) ‘ "
GM2 = 31 d8 @ 130 rad/sec R
PMp = 50° @ 45 rad/sec X
PMg = 80° @ 62 rad/sec
Further observation indicates that the magnitude and phase of the com- }
K pensated inner loop response at the frequency of the first bending mode are R ®
]
& M,1 = 28 dB 1
F Pu1 = -10°
| 1
’ ®
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which shows that this mode is in fact phase stabilized. The magnitude of the
response at the fifth mode is

Pu5 = -10 dB

which also shows the fifth bending mode to be gain stabilized. Finally, the
closed loop response for the compensated inner loop is given in Figure 4-7.
This response shows a notch occurring at the frequency of the first bending
mode. With the inner loop compensated and closed, the design of the outer
loop follows.

2.4.3.2 Outer Loop Design. The frequency response of the outer loop
with the compensated inner loop closed is illustrated in Figure 4-8. Com-
parison of Figure 4-8 and Figure 4-4 shows that the inner loop notch has pro-
vided some desirable attenuation of the first bending mode.

Sketching the Nyquist plot of the outer Toop shows the loop to be
unstable. Analysis of this response shows that phase lead will stabilize the
system. Thus, compensation for the outer loop will be designed to stabilize
the system, and maximize closed loop bandwidth. Again using the analytical
frequency domain compensator design technique, the compensation necessary to
stabilize the outer loop was determined to be:

Geol(z) = Ggy,y(2) « Ggyy(2)

where
(200.9983z - 198.9983) (z + 1)
GC21(Z) = 5 (4-6)
132.65552z" - 243.58133z + 114.92579

(z +1)
Ge,,(2) = (4-7)
8.36235z - 6.36235

where the first stage is a lead-lag compensator and the second stage is a lag
type compensator. The Bode plot for the compensated outer 1oop is shown in
Figure 4-9. The response shows that with the compensation previously derived
the following stability margins were achieved:

PM, = 33° @ 8.2 rad/sec

GMp = 7.5 dB @ 12.6 rad/sec

GMg = 5.2 dB @ 34 rad/sec.

The computer-aided design tools make it a relatively simple task to compute
the closed loop frequency response of the system. This response is shown in
Figure 4-10. The plot shows the bandwidth to be approximately 12.6 rad/sec.

71




e

i

b el At Sad e Sl S e e B Sl S e Mt ond S Sl Anil e el Rt A Sl A Sl A Al bl AR S ST A ST L A

CLOSED INNER LOOP

10.000___

A\
0. / \ [

o -10.00

S— =15 .00
(&} -m.ool_
S
= .

=33.00}

10° 2 4« 8 840! 2 4 8 84Q0° 2 4 8 84

FREQ (RAD/SEC)

CLOSED INNER LOOP

170.00

8

-1
L

N\ T

PHASE (DEG)
8

X
-80.00}—.
“120.
~180.00L_
10 2 4 & 810! 2 4 6 84{Q° 2 4« & B4

FREQ (RAD/SEC)

Figure 4-7. Closed Loop Frequency Response of the
Compensated Inner Loop
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2.4.4. Summary of Design Technique/Tools. The application of the com-
puter aided-design tools to design a digital control system for a class of
Large Space Structures has been demonstrated. It has been shown that the
design tools reduce the computational burden associated with the design pro-
cess. The tools have been designed such that the model can assume as many
bending modes as necessary.

The form of the control system for the DARPA Structure has been devel-
oped. The preliminary analyses show that it is possible to design the system
with a bandwidth that actually extends beyond the frequency of the signifi-
cant bending modes. Sensitivity studies indicate that the multi-loop design
technique 1is also "robust" relative to variations in modal data. In the
example given in Section 2.4.3, modal frequencies were varied from * 10% and
+ 20% of their nominal values. The results showed that the system response
was reasonably stable up to * 20%.
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2.5 Task 5 - Investigation of Structural Damping Models. Early in the
performance of this task, it became obvious that the work and results were so
closely related to that of Task 2 - Extensions of Modeling Techniques, that
it was considered appropriate to report the monthly progress made in the two
tasks under the Task 2 heading. To provide the reader and potential user of
the results a comprehensive presentation and discussion of the work in the
area of LSS modeling techniques and structural damping models, the work and
results relative to this task are contained in the Task 2 section (2.2) in
this report.
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2.6 Task 6 - Implementation of Component Cost Analysis.

2.6.1. Introduction. The mathematical models of physical systems which
are to be controlled are usually reducible to a linear form. The standard
methods of control design assume this as a starting point. These models are
frequently of very large dimension such that it becomes impractical to employ
them directly in the design process. Because of this, analysts and designers
usually work with a truncated or reduced order model. The methods for reduc-
ing the order of a high order system model are a part of the folklore of the
designers' art in the field. Thus, each individual analyst may well have his
own pet technique for accomplishing reduction. O0f course, in the final anal-
ysis it is the performance that is the proof of any design, and the analyti-
cal exercises become merely the means for establishing the preliminary design
which is then confirmed only after an extensive test program involving as
much of the actual hardware as can be obtained. However, the lighter weight
aerospace structures are becoming Tess amenable to ground based testing prior
to flight due to the reduced tolerance to the 1 G earth environment. These
factors have motivated this look at two of the techniques that are currently
being used to guide the modal truncation process.

2.6.2 Discussion. The typical mechanical system can be modeled by a
2nd order, vector-matrix differential equation. Using a vector g of genera-
lized coordinates to represent the system configuration, we can write

Mg+ Cq+Kq = Bw (6-1)
y = P'é +Pq (n x1)

Ml = M;

KT = K;

M and K are symmetric matrices,
M is positive definite,
and K is nonnegative definite.

We have used the vector y to represent the set of variables subject to
measurement and assumed that they are linear functions of system coordinates
or velocities which are not otherwise observable in the physical system.
Matching physical measurements with analysis results consists of comparing
values of y. Acceptability of this match depends on whether the values fall
within the required tolerances. If we let y represent the measured values
and y the analytical values, then we can write the requirements as

lyi - ¥il < ry (6-2)
These requirements represent the degree to which we desire the physical
model to match the mathematical model. Frequently, the mathematical model is

too large at this stage to be used conveniently or economically. For this
reason, truncation procedures which can be applied to the mathematical model
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to reduce it to a more convenient size while giving a measure of the degree
of error incurred in the process are desirable. Several methods exist for
doing this. We shall discuss two of them. The first method which we shall
discuss is called Modal Cost Analysis (MCA) and is taken from "Modal Cost
Analysis for Linear Matrix-Second-Order Systems," R. E. Skelton and P. C.
Hughes, Journal of Dynamic Systems, Measurement and Control, September 1980,
Vol. 102-pp. 151).[12] This method treats the problem of truncation from
either of two viewpoints which result in the same truncation criteria. The
second method does not hgve a name but, for convem’ence,2 let us refer to it
as 01d Tried and True (0T“). Both approaches (MCA and OT") begin with a cost
function defined in terms of the system measurement vector y. The tarm cost
function is used here in the mathematical sense and arises from its similar-
ity to such usage in the theory of extremization as in the Calculus of
Variations. For MCA, the cost function is for the analyst to define within
the usual restrictions for cost functions, i.e., it must be positive defi-
nite. It is desirable to select a cost function that provides a "good"
description of model error. The meaning of "good" must be Teft for the ana-
lyst to define. For OT", the term cost function is used simply for com-
parison with MCA. It should more appropriately be called the “modal peak
function" since the values are the modal peak amplitudes on the output
response curve. The MCA approach is statistical in nature and requires that
certain assumptions be made concerning the nature of the disturbance vector
w. First, any deterministic disturbances are assumed to be absorbed into the
differential equation so that the remaining disturbance w is stochastic in
nature. Second, w is uncorrelated in time and has zero mean. Thus,

E(w} = 0 (6-3)
E (w(thw(t)Tr = od(t - 1) (6-4)

The system equations given in Equation 6-1 can be transformed to modal
variables, coordinates such that

g = o (6-5)

oTMe = 1 (6-6)
2

oTke = A* = diag (wlz, wzz, vee wn e (6-7)

Under this same transformation the damping matrix C is transformed to the
matrix D.

6TCo = D. (6-8)

Frequently, for mechanical systems such as aerospace structures which
are lightly damped, it is sufficient to approximate the matrix D by a diagonal

12. Skelton, R.E. and Hughes, P.C., "Modal Cost Analysis for Linear
Matrix Second Order Systems," Journal of Dynamics Systems,
Measurements and Control, September 1980, Vol. 102 - pp. 151.
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matrix. Thus, we shall henceforth treat D as a diagonal matrix. It is con-
venient to express this diagonal D matrix in terms of the fraction of criti-
cal damping, the diagonal matrix ¢

D = 2zA (6-9)

Using Equation 6-1 together with ¢-5 through 6-9, we obtain the so-called
modal equations

1;_'+ 2cAn + Mno=Rw (6-10)

Y = 'n+-n

These equations then become the working equations for modal cost anal-
ysis. We must now construct a useful cost function which shall become the
basis of our modal truncation considerations. Ideally, we desire a cost
function based on the model error components as in Equation 6-2. It is
tempting to define a modeling error “cost" function V in terms of the dif-
ference y - y, where y is computed from the original, large dimensional sys-
tem model as given in Equat1on 6-10°, and 9\ is computed using a truncated
version of Equation 6-10 in which certain modal coordinates are dropped from
consideration as being relatively unimportant in their effect on y. The
determination of this relative importance is what this study is all about.
For now, we shall define the cost function in terms of the measurement vector

y only

Vo= limeE {yTay} ; (6-11)

QT = Q and Q is positive definite.

We shall show later that maximizing the cost V of the truncated system has
the effect of minimizing the model error introduced by truncation. In Appendix
B it is shown that for lightly damped, mechanical systems such as described by
Equation 6-10, the cost function V can be separated into a sum of terms each of
which depends only on a single mode. These terms are referred to as modal
costs. Thus,

V = ]Vq; Vo depends only or mode « and V, > O. (6-12)

These modal costs then become indicators of the relative importance of
the particular mode in V and hence in the model error. The differential
equations shown in Equation 6-10 which determine the model displacements n
are an uncoupled set of n 2nd order differential equations driven by time-
dependent disturbances. This implies that the individual modal responses are
unaffected by truncation. Since this is the case and since the cost function
is decomposed into modal costs depending only on the modes separately, the
effect of trunca is to reduce the total cost by the sum of the modal
costs over the tru.. sted modes. This sum, then, is indicative of model trun-
cation error. If the modes are arranged in descending order of the modal
costs such that the lowest order modes have the largest effect on the cost V,
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then it is the high order modes that become the candidates for truncation
from the reduced order model. It is possible that some modes have zero costs
and can be safely truncated from the model with no i1l effect on the cost.
This is not to say that there are no effects on the model results, but only
that the effects of such truncation do not noticably change the system mea-
surement or output vector y. Or in other words the physically measurable
parameters are not significantly changed as a result of this truncation.
Perhaps this can be viewed in a different light if we consider that the sys-
tem configuration requires n coordinates for its specification, but we are
only measuring n quantities in y and thus there is insufficient information
to uniquely specify the system state from the measured data. The modeling
philosophy being employed in the modal cost analysis technique holds that the
only important model parameters are the mathematical counterparts to the phy-
sical measurements, i. e., the outputs y.

In order to gain insight into this method let us consider its applica-
tion to a relatively simple example. At the George C. Marshall Space Flight
Center in Huntsville, AL, personnel from NASA and Control Dynamics are devel-
oping a large space structure ground-based pointing control experiment and
related facility. We have developed a model of this which will serve us
here. The system is illustrated in Figure 6-1.
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Based Pointing Control Experiment. ) ®
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The simplified, planar model of this system consists of the x-transla-
tion of the base, y axis gimbal rotation at G2, the first 3 cantilever modes
of the astromast treated as a simple beam and the x-translation of the gra-
vity compensation mechanism. This yields a 6 degree-of-freedom model. The
choice of three cantilever modes to represent the beam was the result of an
intuitive truncation process in which it was felt that the modal frequencies
of the higher beam modes were not likely to be excited. This truncation pro-
cess should probably be revisited but for purposes of this example it is not
required. Since we are currently refining our model of this system we have
refrained from any refinements of this simple model. The modal version of
this model is given below.

np + Onp + Om [.09451, -.006146]w (6-13)

g + Onp + On2 [-.8976, .001778]w

n3 + .020469n3 + 4.1897n3 = [-.1379, .007640]w
ng + .05885n4 + 34.64n4 = [-.6993, .040155]w
ng + .2266ns + 513.3n5 = [-.2475, .01613]w

ng + .6825ng + 4658ng = [-.06957, .005251]w

y = [-.006152, .001776, .005918, -.02791, .1022, -.1773]n
r

100 0
I. §(t - 1) os(t - 1)

E {wwT} . ,

For this case we have only a single output so we let Q = 1. In Appendix B,
it is shown that the modal cost function is

/p .aTQ @.a‘“az + '@aTQ@a .
Vo = Talohg . (6-14)

3
bz qcq

Using Equation 6-1, we compute a modal cost vector (column MCA of Table
6-1) and suppose we choose to select the three most significant modes with
which to analyze this system. First, we note that the two zero frequency
modes have an infinite modal cost and thus must be included in the reduced
model. Thus, we are left with selecting an additional mode from the remain-
ing four.

Under the MCA selection criteria, we select mode 4 to keep since it has
the largest modal cost of the remaining modes. Thus, using MCA we have
selected modes 1, 2, and 4 as the three "best" modes_to model our system.
Let us now look at the other technique which we call 0T°. The selection cri-
teria are discussed in Appendix C and result in a modal factor which is simi-
lar in appearance to the modal cost. Thus, let us call this factor Vo. Then
from Appendix C (using the notation above) we have
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To use this technique, we must estimate .., :cted amplitudes for the driving .
force w. We assume here that the force at the base has a magnitude 10 and at _—
the gimbal a magnitude 1. Using these assumptions, we obtain the vector o
shown under the OT" column of Table 6-1. ]
-
TABLE 6-1 .
MCA AND 0T2 SELECTION CRITERIA VALUES _
Mode MCA or? *
1 o o
2 o« ®
3 0.00388 0.727 _
4 0.00934 0.0106 _ °
5 0.000275 0.000048 .
6 0.0000024 5.88 x 10-7

From these results, we see that we should select modes 1, 2, and 3. »
This conclusion conflicts a bit with MCA. That this should be so is not sur- °
prising since the selection criteria are very different from those used under o
MCA. It is unknown whether there is any equivalence between the two
methods.

These methods can be applied to more complex, flexible systems. S
Appendix D contains a brief discussion of the application of the modal cost ) P
analysis method to a continuous, uniform beam model. This model can also be A
analyzed using the 0T~ technique. With this technique we can proceed in anas ‘
logous fashion for the first eleven steps. The truncation criteria for OT
are based on keeping modes which have the highest response amplitudes as
explained in Appendix D. Starting from Appendix D Step 12, we can calculate

v fax0) ba(xa) (6-16)
oa = -
* 4ca2 wa“ mb2

This can be compared with Appendix D Step 16 and reveal% that the two )
truncation methods yield nearly the same results except that O0T" contains the -
extra factor 2c4uy which tends to reduce emphasis on the higher order modes.

This result is similar to that which was noted before for the simple 6 :
degree-of—freedom model where modes 1, 2, and 4 were retained using MCA while . ]
0T~ procedures suggested 1, 2, and 3 should be retained. Results for the 1st 1
;. 10 beam modes are shown in Table 6-2. » °
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COMPARISON OF MODAL IMPORTANCE AS DETERMINED BY THE MCA AND OT2 METHODS

oT2
Rank

Mode

x 10-10
MCA

TABLE 6-2

X 10510
oT

MCA
Rank

1

10

These results point up the fact that modal truncation is not entirely
The accuracy of the truncated model depends on the disturbances
It appears to be impossible

scientific.

as well as the accuracy of the original model.
to remove the analyst's subjectivity entirely from the analysis process. It

100.666

1.35 x 10-12
10.4822

2.59 x 10-13
.94791
1.99 x 10-15
.13535
1.89 x 10-14
.018735
4.56 x 10-16

161.27

5.39 x 10-14
.18659

2.60 x 10-15
.00607435
8.88 x 10-19
4.425 x 10-4
4.74 x 10-17
3.705 x 10-5
7.3 x 10-19
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enters into the construction of the system model and thus affects the large
dimensional system model. Judgement must be exercised to select the distur-
bances to be included. This judgement is necessarily based on subjective
assessments. Since analysis is always subjective, one can only assess how
"good" the analysis was by observing how well the analyst's predictions match
experimental reality. Any other kind of assessment is probably unrealistic
at best and an exercise in obfuscation at worst.

These two methods (MCA and OT?) can be compared on the basis of ease of
understanding and application. The application ?f each method appears to be
about equally difficult. However, since the 0T" method is more pictorially
appealing, it seems to be more readily understandable and perhaps from that
standpoint better. What remains to be assessed is the effgct on overall sta-
bility of the control system designs based on MCA vs. 07" truncated models.
In any event, such proofs are probably academic unless some element of physi-
cal reality is injected. The real world will tell if the system is stable.
Analysis can only make well-educated but uncertain predictions. Finally,
then, the Modal Cost Analysis technique offers a very nice formal way of
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offers greater potential for extension to more general systems and to the
problem of modal truncation in general. It would take an exhaustive study to
conclude superiority of either technique or of any technique and, until this
is done, the analyst's judgement must necessarily continue to be involved in
modal simplification.

*

S

treating modal truncation and should appeal to those of mathematical bent and L
®

2.6.3 Conclusion. The Modal Cost Analysis (MCA) method for the trun-
cation of linear system models is a versatile method. It provides a formal-
ism for reducing the order of a large variety of problems. It is oriented
toward the optimal control problem and consequently may be somewhat less use-
ful for other applications. Also, it does not seem to take into account
questions of stability. It is not clear that the modes selected through the
MCA criteria include the ones that are most potentially destabilizing. Also,
it appears that there is too much freedom for the analyst to select the
reduction criteria, in that much judgment must be exercised for the determin-
ation of the statistical behavior of the disturbances and for the selection
of the weights to be used in the cost function. This freedom means that it
is possible and indeed likely that different analysts working the same prob-
lem will arrive at different models and results. Thus, it appears that less
formal, more intuitive methods for modal truncation are just as good as the
MCA method and perhaps better since they may provide the analyst with more °
intuitive insights into his particular problem and certainly require less
effort in learning a new formalism. The use of formal methods for modal
= truncation or for model reduction in general is an area in which much more
work is needed and methods along the lines of modal cost analysis are desir- .
able. We have outlined what we feel are some of the difficulties of MCA and : )

\. . @,

AA.AL- 4 .. )

5
_‘ it appears that there are ways to overcome at least some of them. This .]
4 effort should be continued to reach a more generally usable and understand-

able technique or techniques.

2.6.4 Modal Cost Analysis. The work performed by Dr. Robert E. Skelton
on this task under a subcontract is described in Appendix E, "Case Studies of S
Model Reduction of Flexible Structures by Modal Cost Analysis." P
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3. CONCLUSIONS

3.1 Task 1 - Digital Implementation of Control Techniques. Software
routines have been written that alfow systems of the DARPA type to be ana-
lyzed quickly and efficiently. Frequently domain design programs have been
developed that allow digital compensators to be designed rather simply. A
design technique has also been developed that extends the application of
Seltzer's Digital Parameter Space technique to the design of digital con-
trollers for large flexible structures characterized by an arbitrary number
of bending modes.

3.2 Task 2 - Extensions of Modeling Techniques, and

Task 5 - Investigation of Structural Damping Models. Because the
work on these two tasks was so closely related, the conclusion is drawn from
the consolidated results.

The modeling techniques developed for the LSS/GTV were given impor-
tant corroboration by modal testing done on the ASTROMAST beam at MSFC.
These results indicated accuracies in the lower modes of 11% or better.
Thus, we have developed a dynamic model of the LSS/GTV and it has been veri-
fied, to the extent it can be currently, with the data available and we are
confident our techniques represent the structures.

3.3 Task 3 - Evaluation of ACOSS Control Methodologies. The LSS con-
trol techniques discussed include Lockheed™s LAC/HAC, TRW's Positivity, and
General Dynamic's MESS. Although each approach is observedly different, each
technique employs the same objective, optimal performance when presented with
an inaccurate plant model. Each technique addressed the problem of the de-
stabilizing effect of uncontrolled modes on the system. TRW concludes that
application of the positivity theorem to LSS assures stability (i.e. system
will not become unstable due to observation and control spillover effects).
In addition, positivity more indepthly (than LAC/HAC or MESS) examines the
problem of noncolocation and inclusion of actuator and sensor dynamics.
Lockheed concludes that LAC/HAC algorithm eliminates spillover instabilities
through the application of frequency shaping. General Dynamics concludes
that MESS solves the problem of known truncation through restructuring of the
performance index.

3.4 Task 4 - Determination of Optimal Form for ACOSS Controller. The
application of the computer aided-design tools to design a digital control
system for a class of Large Space Structures has been demonstrated. It has
been shown that the design tools reduce the computational burden associated
with the design process. The tools have been designed such that the model
can assume as many bending modes as necessary.

The form of the control system for the DARPA Structure has been devel-
oped. The preliminary analyses show that it is possible to design the system
with a bandwidth that actually extends beyond the frequency of the signifi-
cant bending modes. Sensitivity studies indicate that the multi-loop design

87

b o




—rw*q~s-,-.u N T T e A e L S a L I T S S R e e e A
-

technique is also "robust" relative to variations in modal data. In the ex-
. ample given in Section 2.4.3, modal frequencies were varied from + 10% and +
f‘ 20% of their nominal values. The results showed that the system response was

reasonably stable up to + 20%. -

3.5 Task 5 (See 3.2 above.)

3.6 Task 6 - Implementation of Component Cost Analysis. The Modal Cost
Analysis (MCA) method for the truncation of Tinear system models is a versa-
tile method. It provides a formalism for reducing the order of a large
variety of problems. It is oriented toward the optimal control problem and
consequently may be somewhat less useful for other applications. Also, it
does not seem to take into account questions of stability. It is not clear
: that the modes selected through the MCA criteria include the ones that are
e most potentially destabilizing. Also, it appears that there is too much
freedom for the analyst to select the reduction criteria, in that much judg-
ment must be exercised for the determination of the statistical behavior of
the disturbances and for the selection of the weights to be used in the cost
function. This freedom means that it is possible and indeed 1ikely that dif-
ferent analysts working the same problem will arrive at different models and
results. Thus, it appears that less formal, more intuitive methods for modal
truncation are just as good as the MCA method and perhaps better since they
may provide the analyst with more intuitive insights into his particular
problem and certainly require less effort in learning a new formalism. The
use of formal methods for modal truncation or for model reduction in general
is an area in which much more work is needed and methods along the lines of
; modal cost analysis are desirable. We have outlined what we feel are some of
the difficulties of MCA and it appears that there are ways to overcome at
least some of them. This effort should be continued to reach a more gener-

ally usable and understandable technique or techniques.

3.7 Application of Results of ACOSS SEVENTEEN. The results of this two
( year contract were considered by DARPA to be of such significance that a fol-
A low-on contract was established and effort was initiated in December 1983.
The new effort is called Advanced Structural Control Techniques (ASCOT) and

will be for a period of twelve months.

3.7.1 Objective of ASCOT.

3.7.1.1 To develop, evaluate, and prepare to test and implement Advanced
Structural Control Techniques (ASZOT) that are applicable to future large
flexible military spacecraft.

y 3.7.1.2 To develop and integrate a Simplified Systematic Digital Design
‘ (S2D2) which meets anticipated structural and attitude control system perfor-

mance requirements.
3.7.1.3 To develop an ASCOT Technical/Management Program Development
Plan and to select, evaluate and compare candidate control system techniques
including S2D2.
' ’ .
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APPENDIX A
EXTENSION OF THE PARAMETER SPACE METHOD TO
LARGE FLEXIBLE STRUCTURES

S. M, Seltzer, H. E. Worley, R. J. York
Control Dynamics Company

Huntsville, Alabama

Abstract

The application of the parameter space method is extended to a significant
class of digital control problems associated with large flexible structures.
The control problem considered was to develop a proportional-derivative form
of a control law that would keep a sensor inertially fixed that was mounted
on a large flexible structure which is represented in modal coordinates by a
rigid mode and an arbitrary number of bending modes. An algorithm was de-
veloped that would accept as input an arbitrary number of bending modes and
would return- as output the form of the characteristic equation needed for the
parameter space method. Values of the contro) gains would then be determined
from stability considerations and desired damping.

I. Background

This paper extends the application of the parameter space method to a signif-
icant class of digital control problems associated with large flexible struc-
tures, problems that were previously intractable when the designer wished to
include several bending modes <in the plant representation. The control prob-
lem considered was to develop a proportional/derivative form of a control law
that would keep a sensor inertially fixed that was mounted on a large flex-
ible structure which is represented by a rigid mode and an arbitrary number
of bending modes. The goal was to develop an algorithm that would accept as
input from the designer an arbitrary number of bending modes for the plant
representation and would return to him the form of the characteristic equa-
tion needed for the parameter space method. Based upon stability considera-
tions and the desired damping, values of the control gains would then be
determined by this method. The ability to handle a digital proportional/der-
ivative controller for an arbitrarily large number of bending modes is the
main contribution of this work.
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.. Before proceeding, a quick review of the parameter space method is in order,

- including its foundation and the previous work to extend it to higher order .
systems. Based primarily on the work of D. D. Siljak[A-1] the parameter oS _-.jj
space method is an analytical tool developed for use in control system analy-
sis and synthesis. Briefly, the method as developed by S. M. Seltzer[A-2] —-~‘
g permits one to map the location of the roots of the system's characteristic ’
[ equation onto a plane (or three-space if desired) whose coordinates are the
- system's free parameters. The parameter plane is readily divided into
regions identified with system stability and instability.

Once the parameters of interest, kg and kj;, are chosen, the characteristic
equation of the closed-loop control system is written in the needed form:

M r
C.E. =i21 [aj kg + bj k1 + fjl2! (A-1)

The free parameters need not be gains but just as well could be other system ;
parameters. In addition to the characteristic root locations, other factors o e
of interest such as constant damping ratios and specified exponential time . @
constants may be portrayed as contours on the parameter space. Thus in a AN
manner somewhat reminiscent of the classical root locus method, a portrait S
may be presented of all pertinent aspects of the system's transcient response

as functions of several parameters (rather than the single parameter, open- SO
loop gain), and as a function of the independent argument, «T, where « is the SEERER
system damped frequency and T is the digital sampling ‘period. -

The parameter space approach may be employed in either the continuous or dis-
crete domain. Techniques such as the Simplified Analytic Method have been
developed for the purpose of generating the needed arrays A, B, and F for the
characteristic equation, and are satisfactory for lower order systems. When
N becomes large (i.e. N > 3), the problem becomes intractable. The extension
of the method to handle arbitrarily high order systems for the continuous
case has been accomplished by Seltzer and B. A. Asner.[A-3] This work
addresses the sampled data or discrete control case.
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A-1. Siljak, D.D., Nonlinear Systems, Wiley, New York, 1969. "-.":J
A-2. Seltzer, S.M., "Sampled-Data Control System Design in the Parameter -
Plane," Proc. of Eight Annual Allerton Conferences on Circuit ®
System Theory, Monticello, ILL., 1970, pp. 454-463. )

A-3. Asner, B.A. and Seltzer, S.M., "Parameter Plane Analysis for Large
Flexible Spacecraft," Journal of Guidance and Control, Vol. 4, No. o

3, May-June, 1981, pp. 284-290. - .a
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II. Plant Representation

Modal Coordinates AORIERN

-9
It is assumed that the plant representation of the large scale space struc- 3
ture is in modal coordinates. If the original system is defined by the vec-
tor matrix equation ]
LN ) .
fm] X + (k1 X = F (A-2) ‘
where
[m] is the mass matrix _‘ é
[k] is the stiffness matrix '_ 1

F is the force/torque vector,
then the transformation
X=Qn (A-3)

where Q is the modal matrix composed of the normalized eigenvectors will

yield the desired representation . 4 ®
n + [wz]p_ = QT_E = T¢ (A-4) ’
- R
The plant transfer function is expressed as S q;
N ¢iYi s
Gp(S) = 2 (A-5)

i=1 s% + 2zjuis + wiz e

- where vj, ¢j denote the slope of the ith mode at the torquer, sensor respec-
’ tively.

P i, wj denote the damping ratio, natural frequency of the ith mode
rerespectively. —

s (See Fig. A-1) Note that modal damping has been introduced here.
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Form of the Control Law

The sensed angular rate, ©, is measured directly,

¢jnj - (A-6)

©
L]
W22

j=1

The commanded torque employs © and its integrated value, 0, (see Fig. A-2),

Te = Kp © + Kpo . (A-7)

Assumgtions

a)

b)

The digital onboard controller will be of the position/derivative (PD)
form.

One has knowledge of the damping ratio, zj, and frequency, wj, of each
mode used.

Only one sensor, torquer pair is used, but colocation is not assumed.

No torquer-sensor dynamics are included.

The selected parameters for portrayal on the parameter plane are related to
the control gains, namely for the algorithm developed,

ko = Kp k1 = Kp T/2. (A-8)
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Figure A-1. Plant representation.
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I1I. CHARACTERISTIC EQUATION

Using standard feedback control simplifying techniques, the transfer function
corresponding to the control system in Fig. A-2 is given by

ik_ . Kp 2[Gpol S)Gp(S)] (A-9)
r* 1 + [Kp+KpDs(2)1Z[Ghol s)Gp(s)]
where
N ¢iYis
Gpls) =} > (A-10)
i=]1 s"+2Cjwjstuwy
1-¢eTs T(z+1)
Gho(s) = ———— , Dp(z) = s (A-11)
s 2(z-1)

with vj, ¢ denoting the slope of the ith mode at torquer, sensor (respec-
tively), and ¢4, «j denoting the damping ratio, natural frequency of the ith
mode. The sample time is T, and D;(z) represents the trapezoidal integration
rule.

The following, frequently appearing quantities in the derivation are repre-
sented by the given symbol:

4
h~‘~-
L
h.‘.
l.‘>--
b.'_N
.~ e
)
.

aj = gjwj cj = cos BiT
B = will-g?§11/2 si = sin 84T (A-12) SR
ej = ej~ail . o .
: . )
Three lemmas which simplify the derivation follow[A-4] LT
Lemma 1. j';‘il;
G 's) N
ZGho(s)G(s)] = (1-2-1) Z |— . (A-13) '!?_,‘:_._‘%
s T
A-4. Kuo, C.K., Digital Control Systems, SRL Publishing, ILL., 1977. . i
°» o
L
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Lemma 2. If «#0, then

1 1 ze-26T . sinfw(1-c?)1/271] (
|3 = ——=% . (A-18)
s2+2zustu’ w(1-g2)1/2 2%-2ze-t¥Tcos[w(1-22)1/2T]+e- 2250

Restating Lemma 2 using the notation in Equation (A-12) yields

1 1 esz
1 = e — (A-15)

7 |l—
SZ+2CwS+w2J B zZ-Zecz+e2

Finally, if «=0, then

Lemma 3.

1 Tz
Z - — - (A-16)

2
s | (z-1)

With the above 1limits, the characteristic equation can now be derived.
Equation (A-11) will replace Dy(z), but one must calculate

z-1 Tz N_ oivq ejciz
Z[Gho(s)Gp(s)] =|— 4111 + 5 (A-17)
z (z-1) i=2 8§ 2°-2ejcijz+ei?

Next, substitute into the denominator of the o*/r*, i.e. Equation (A-9), to
obtain

T z+1 z-1 Tz
1+ |Kp+Kp o =0 ——| o+ —. $1Y1
P 2 z-1 z (z-1)2
(A-18)
N é4Yi ejsiz
tl— - 3 7| =0
i=2 Bj 2" -2ejcjz+ej
97
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Multiplying through by the common denominator _
2 N 2 2 5 .
(z-1)° 1 (z2°-2ejciz+ei”) (A-19) P - S
i=2 :
yields for the characteristic equation )
N T R
(z-1)% 1 (zz-Zeici+e12) + | Kp(z-1) + Kp—(z+1)-I . 'V - @

i=2 2 J
: N 2 2 . - ‘ 14--:.
~ o171T T (2°-2ejciz+ei”) (A-20) _—
z i=2 ‘ ' .
F N [ okrkeksk N .
’E + ) _— (z-1)* 1 (zZ—Zeiciz+ei2) = 0. .
k=2 Bk i=2 f
ik ;
». .~ J
3 ’ ®
! IV. Algorithmic Development of Parameter Plane Form of C.E. ﬁ"'f?
‘ For the parameter plane analysis, the characteristic equation must be in the B
form ST
) [

2N

C.E. =7 (Ajkg + Bjky + Fj)zi . (A-21) .
i=0 -
o

The objective then will be to develop a programmable algorithm to transform
the characteristic equation of Equation (A-20) into that of Equation (A-21),
that is, generate the arrays A, B, and F.

The following algorithm for multiplying polynomials will be instrumental in
achieving the above goal. As can be seen from Equation (A-20), polynomial
products of the form

PN = (2°+ajz+by) (A-22)

‘ ‘ i

L= 4
—
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occur often. Notation: In pp(z), let py,j denote the coefficient of the PA|
term of this polynomial. For example,

Pyl2) = 92,222 + Py 2% Py, (A-23)
where {j
Ppp =1 Py =2l Ppq=b1 . (A-24) | -?;’5

ALGORITHM P: Let N > 2 be specified. Then the coefficient of the polyno-

mial, f%
N, ®
Poy(2) =1 (2% + ajz + bj) (A-25
i=1
can be determined recursively by

Q.

Pom,0 = Pom-2,0 Dm

Pom,1 = Pom-2,1 Dm * Pap2 ¢ an

Pom,i = Pom2,1 Pm * Popop i-1 3m * Pop o .2
for i=2, 3, ..., 2m-2.

Pom,2m-1 = Pom-2,2m-2 @ * Popo2 2m-3

Pom,2m = P2m-2,2m-2

where m = 2, 3, ...N -
Proof: (Method of mathematical induction)
Notes: 1. Calculation order is Pz(z) given, then P4(z), P6(z), coey pZn(Z)'

2. The above recursive approach is more accurate computationally
than closed form expressions.
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To obtain the desired form of the characteristic equation, Equation (A-21),
one can generate polynomials D(z) and H(z) so that the characteristic polyno-
mial becomes

T
D(z) +[Ko(z-1) + Kp ; (z+1)}H(z). (A-27)

The general procedure is outlined in Figure A-3. Note that D(z) and H(z)
have degree 2N and 2N-2, respectively.

Each step in the procedure is discussed with computational efficiency in
mind.

Step 1. The polynomial D(z) can be obtained using Algorithm P with initial
values of

dp =1,.dy = -2, dg = 1. (A-28)

Notation: Let c; denote the coefficient of zi in polynomial C(z), i.e. for
0(z)

D(z) = dpy 22N + dpy-p z2N-1 + ...+ dp 22 + 4] z + dg (A-29)

Step 2. Obtain the coefficients of G(z) from those of the previously calcu-
ated D(z). Since

D(z) = (22 -2z +1) . &(2), (A-30)
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2 N 2 2
1. COMPUTE D(z) = (z-1)° 1 (2" - 2ejciz + ei")
i=2 .
|
L
d N » .
¢ 2. COMPUTE 6z2) =1 (2% - 2ejciz + ef) .
[ - i=2
¢
! ‘
-4 : ¢
X 2 N 2 2
3. cowuTe EK)(z2) = (z-1)° 1 (2 - Zejciz + eff)

i=2
itk

* 0

TN

. N ‘
4. COMWUTE H(z) = é1v1 T+ G(z) + 7 oprkexsk - EK)(z) .
= —Tk_— .
9 —
q
5. lastly, express A, B, F in'terms of elemants of D(z), H(z)
.. ~ 4
Figure A-3. Procedure for obtaining arrays A, B, and F.
K ]
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multiply out the right-hand side, equate coefficients, and solve for the
coefficients g4, i=0, 1, 2 ..., 2N-2 to obtain

9on-2 = 92N
Ion-3 = Dy ¥ 292522 (A-31)

-1 * 2e2n-1-7 ~ %on-i

2N-2-1

for i =2, 3, ..., 2N-2.

Step 3. Express the coefficients of E(K)(z) in terms of those of D(z), K
given. To do this, note that

D(z) = (2> + ag z + b) . E(K)(2) (A-32)
where (referring to Equation (A-20)),
2
aj = -2eicij, bj = ej (A-33)

As done above in Step 2, one can obtain

elKlpy 3 = don-1 - a elKlpy_p
K)oy o_i = doy-i - by eKIan-i - a e(Klay_p_;

(A-34)

for i=2, 3, ..., 2N-2.

Step 4. Just element by element addition.
Step 5. With kg, k1 being the two parameters of interest as given in Equa-

jon (A-22),_ the arrays A, B, and F can be obtained. For example, the coef-
ficient of z° is given by

T T
dp +Kp . hy +Kp . E-hl -h2 . Kp +Kp—h2 . (A-35)
2
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Collecting the appropriate terms as shown in Equation (A-21) yields
A2 = hy - hp, Bz = hy + hg, F2 = dp (A-36) .-

The complete arrays are given in the following Table A-l.

TABLE A-1. TWO PARAMETER FORM OF CHARACTERISTIC EQUATION (ARRAYS A, B, AND F)

j-'-_:

E

h 2! A By Fi , .j‘

g .
L@

g z2h-1 h2y- 2 h2n-2 doN-1 -

;':5' 22N-2 h2n-3 -han-2 h2n-3 +han-2 d2n-2 J

- 2N-3 .9

- z h2x-4 -h2n-3 h2N-4 +h2p-3 d2n-3 7]
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V. VERIFICATION

In previous contractual work on large space structures, the parameter space
approach was employed with one bending mode. Subsequently, a second bending
mode was added. The results obtained with the new algorithm that is designed
to handle an arbitrary number of bending modes are in agreement with those of
the previous work.

VI. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE STUDY

The development of this algorithm removes a serious drawback in the applica-
tion of the parameter plane approach to the problem of discrete control of
large space structures. Previously, the number of desired bending modes
exceeded two, then the task of obtaining the necessary form of the character-
istic equation was quite complex. Now, once the modal representation is
available, this drawback is eliminated by the automated generation of the

needed arrays A, B, F. It is anticipated that this algorithm will now be , .‘
employed in conjunction with the modal representation of the DARPA type large 1
scale flexible space structure as developed by Control Dynamics.
Several areas of possible extension of this work follow:
' » .1
1) Include sensor, torquer dynamics.
2) Allow for more than one sensor, torquer pair.
3) Include structural damping at the start, rather than introducing it ." Py
fd later into the modal representation. J
{ 4) Introduce a second integrator into the feedback loop with a corre-
{ sponding control gain. Preliminary work indicates that the same |
] 1ine of development can be used and that the needed arrays A, B, C, j
P F can be generated by the computer. ) '.1
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APPENDIX B

Derivation of Modal Cost Function

The modal cost analysis technique (MCA) is a method based on statistics for
selecting a reduced set of coordinates for modeling a linear system. The
method starts with a cost function and proceeds to select a, subset of the
modal coordinates of a specified size such that the reduction in the cost
function resulting from dropping the coordinates not in the subset is mini-
mized. Let us consider a linearized system

Ax + Bd, (B-1)

Px.

<>

There exists a transformation T which transforms this equation to modal coor-
dinates x = Tn.

An + Bd
Pn
T-18; 7 = pT

The modal coordinates n diagonalize the matrix A to A. Rewriting the com-
ponent equations

™ %gna + Bypdg, (a not summed) (B-3)
Yu paas.

Here we have used the convention that repeated indices are summed except as
noted. let us define a cost function V

(B-2)

o<l .
"o

V = lime{y*Qy} ; y* = xf*; where * denotes complex conjugate
treo

= lim e{qulu*.Vv}
torx

= lim e {Qu\;p-ua*v\)yna*ny}
troo

= ¢ ) im{qupua*F\,Yna*nY}
troo

= qupua*P 'A> {na*‘”ny“’}

Now Equation B-3 can be integrated in closed form
t [}
ng = @atno+ [ dt'eralt-t')B qdg(t') (a not summed)
0
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t
ng™ = :im é dt'e*“‘t‘t')B;BdB(t') (B-4)

Equation B-4 only holds if the linear system is stable asymptotically. Now

t t , "
Time { [ [ dt'dt"era*(t-t')ery(t-t")
tre 0 O B B* s
dg*(EY)ds(t")}

€ {na*an‘yw}

t t * [
] : 1 "l (t-t' )exy(t-t )
tlino {‘B-as* Y5 6 6 dt dt era . [dB*(tl )ds(tu)]

(B-5)

At this point it is reasonable to assume that the disturbances dg(t') and
ds(t'') are uncorrelated for t' = t" so that

e {dg*(t')ds(t")} = apslt)a(t'-t") (B-6)

In addition, we assume the disturbance statistics are also independent of
time so that ogs is constant. Thus

e {dg*(t')ds(t")} = opss(t'-t") (B-7)

Substituting Equation B-7 in Equation B-5 and integrating over t" we obtain

. t .. -t
e [ng*ny=} 1im g dt' elXa* + A )t-t')B gxp 5 ops

tr=

t L
1im  Byg*Bysops 6 dt'elAa* + Ay)t
trm

1 o«
Bag Bysops — ——Lelha" * )" -1l
Y

E&B*EQSUBG
= — (1)

S (B-8)

106

St Iy IR S TG T SR S0 S S I ST S BRI S S, S P N

—p———— .

AN NI

:
. CC ’
. ' D P L
. . y e ‘e 4
: .MA;AAJJ.MJ P S A

- . . s
’ s %t %
v .



St s hat o I et i)
. B

/]

1

v,v'r‘.ff‘-g‘ r‘Tf

—

........

Thus,

Fa B*_B-r 8

*

Vo= -QuPuaPuy
Aa

085 (B-g)
+ Ay

In virtually all problems of interest the system described in Equation B-1
was originally a mechanical system whose equations of motion were developed
as a set of 2nd order linear equations

Mq+Dg+Kq = d
-7 - (B-10)

y ='a+''g
The mass matrix M is normally positive definite and symmetric, and the stiff-
ness matrix K is nonnegative definite and also symmetric. With these assump-
tions we are assured of the existence of a transformation matrix ¢ such that

o TMo 1 and

2

(B-11)
Q° = diag (w12 ee wpy).

oTKe

In general, the matrix ¢ does not diagonalize the damping matrix D. However,
for lightly damped systems it is assumed that ¢1D¢ is approximately diagonal
and the assumption is made that

oTD® = 2¢0; ¢ = diag {¢] ... Z\}- (8-12)

The system in Equation B-9 is put in the form of Equation B-1 by writing

R (B-13)

Using the transformation g = ¢n we transform Equation B-12 to

X 2 * .
-2zQ -Q oTM-1:
LY B oL i d (B-14)
n 1 0 n 0
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2

= a

The subsystem j corresponding to nj can be written from Equation B-13 as

31 - -2z ju 'wjz Nt . 2Jﬁ'1f; (B-15)
nj 1 0 nj 0
° - [21 ee e EN] . (8'16)

The eigenvalues arising from Equation F-14 are
Aj = -gjuj 1 wj V1 - zj (8-17)

Looking back at Equation B-8 and using Equation B-16 for the eigenvalues, we
note that the terms in which a = y are the dominant ones with Ag* + )¢ =
-2zkwk since gk is assumed to be small. Thus, we can write V = g Vo where

(P*QP)4q - (B*UTET)aa
Vo = (no sum on a) (8-18)
2C g

The system in Equation B-13 can be diagonalized by the matrix T

A | oax
i TR ;3 A = diag (A1 ... Ay). (B-19)
143
Also,
1 | -a* || (A-a%)-1] 0
pl e Boao s el (8-20)
S 4 0 | (A-A%)-1

Now, referring back to Equations B-1, B-9, and B-12, we see that for the 2nd
order system

s wis |
;. |}-' ;] g . [___5_] . (8-21)
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In terms of the transformed system, Equation B-13, we have

- 15
Pl = [? '¢: /'\°] 2 ' = ._EM:-;‘—--— (8-22)

Uts’insi; Equation B-2 and the transformation T in Equations B-18 and B-19, we
obtain

o
1]

I:G)'o :k&’o] #A—l-f— (B-23)

or,

a- |
"

5 i it
|::~'¢A +F 0 | b onx +F e (B-24)

and

[T (B-25)
(A - A*)-1 ¢ M-1p

Thus,
Pua = P'uk®kara * PukOkas o =1 oo N (B-26)
and
Fuu+N = Pua*s
Similarly,
1

Bug = N'ag (a no sum) (B-27)

2iwg
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Now, from these results, we have
(P*Plaa = PuaQuuPva (o no sum)
= (' kOkara* *+ © kOka) Quu
(-;'vp°paxu + vppal
= fpatpa [0k P'vp hal?® + puk Pvp
+ ‘p'uk Fupxa* *Puklp'vplanow
From the symmetry of Q and since \q = -Zqug * fugV1 - ¢ 2
(P*P)ge = ’kc‘puquv[@'uk@vp%z *?uk Pvpl
- 244 kafpaluy P'uk Pyp (Mo sum on a)
From Equation F-26 and Equation F-18, we obtain
Voa = Va * W+a = %a®paluv E?'uk ?'vp”az *?\ukf?vp]
X [{B'ag UB‘YG.C‘Y]

3
4740
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(B-30)

(B-31)

o i
Y. 'y
| S

L
-
e
-
L

ettty
et e o
LI
L S A S

v
*




APPENDIX C

Derivation of OT> Modal Peak Function

. - 2 . . -
o
Steady State Solution: IR
-
BapWo junt q
Na = Z Z e™D L
wg - owp ¥ Zicawawo T
yo = ! (Tgana ""P'Ba"a) .
a
o
P ga + iwD (Pn R
Ba jwat ]
= 2 2 X Baplﬂpe D
wg = wp *+ 2i Saap ‘
S 2 -4
2 P Ba * 1‘”[)? Ba ’ L
VO = z LYB' = Z l ( 2 > ) apwp ‘.*
B Ba wg = wp” * 2igququp -
Yo .
D
modal peaks RN
=7 EREN
| / R
| Co
' ] . - 3
: | : ' ! ‘-‘.‘“‘t».
[ Lo ! l 1’_£?
- ooy l | S
'L 1 1 1 | ] | wp B
a ..
- As before, we assume g, << 1 so that the peaks in the Vg curve corresponding ]
t’ _ to the modes are due to coincidence between w.p and some w,. Thus, RN
) . 2 . '._.'
4 + i ! o
Ba o Ba -
y =
[ Vo = L Voa; Voa = 2 > ZBQB“-'B .J
4 a 8,p 2G quig =]
2 2,5, S
Pxa” * vaP'aa 2 2
voa = z 2 Y BGB wg )
l AB 4z, wq ]
, @ o,
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s APPENDIX D '
1 A Tutorial Example of Modal Cost Analysis ;”-.-q
by Robert E. Skelton
Objective: [Illustrate the features of Modal cost analysis with the minimum - 3
of detail. JE o
Suggested model: A simply supported Euler-Bernouli beam. ‘_f-l
- = :
: T et " i
; [ 1 ) o
! 'i_, ) >’ |
9 X ) ' . .<
Equations of Motion: 4 ]
f :
3 Y 2 '
; 3 w(x, t) 3°wlw, t) (D-1) ) °
EI—T-—-+9A——-2——— = ulx, t) : 1
‘ ax at R
u(x, t): force per unit length " Ay
| w(ix, t): vertical displacement I_-,-ij-'.;
p: uniform mass density per unit area .' ®
A: cross-sectional area of beam 1
{ wix, t) = o(x) n(t) = '21 ¢i(x) nj(t) (D-2) R
S i=
1
.1
r; inx ’
¢1(X) = aiSin— , i = 1,2,0.0.- (D'3)
L o
in . EI 1
wil = —"— , i=1,2,..... (D-4) s o
t’ L pA T )
g 1
y normalize ¢j(x): ‘}
. .
E Lo, ]
l | » Ay (x)dx = pAL = mp (determines ai) (D-5) [ )
. 0 -
h
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leads to
6L ¢;(x)ulx, t) dx

ng(t) + 2cimiéi(t) +ulni(t) = ; (D-6)
6L pA¢i2(x) dx

Damping ¢ arbitrarily added to reflect presence of material damp-
ing; Point located actuator (force):

ulx, t) = u(t) s{x - xg) (2-7)
Output of interest: wi(xg, t) = y(t) = displacement at xg.
y(t) = 121 ¢o5(xgIn;(t) (D-8)
Hence (6) reduces to
ni(t) + wi®ng(t) = byult) (0-9)
yit) = _Zl ¢4(xg)n;(t) (D-10)
]:
1
b1 = —¢1(Xa) (D"ll)
b

Modal Cost Analysis

In the absence of any closed loop information about the control inputs u(t)

we chall

assume that the actuator device has some signal to noise ratio such

that "at idie" (no control commands) u(t) is simply the zero mean white noise
emanating from electronic noise within the device power system.

euwlt) = 0, eu(t)u(r) = &(t-r1) (D-12)
Under these conditions the performance metric
T,
vV = limle [ y“(t)dt (D-13)
T T 0

measures the response of the system at the location x of interest,
and the contribution that each mode makes in V is
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1
V-, = -3 ¢i2(XO)b‘|2 (D-14)
2¢jui

and the total response is the sum of the modal responses
v o=} V. (D-15)
Vi is called the modal cost.

From a variety of substitutions of (3), (4), (11) into (14) the following
equivalent expressions of modal cost are obtained.

1

Vi = —3 ¢i2(X0)¢iz(Xa) (D-16)
2z jwi mp 4
1 ) 2 4
i . ¢
1 inxg inxa L inx S

. 2 . 2 . 2
Vi = Kk sin sin sin dx | -4 \
! x L L of L ¢
4 (D-lg) P ~:"1
ko = kil R
Conclusions:

1. The]moda1 cost Vi tends toward zero as i tends toward <, but not monoton-
jcally!

2. Explicit analytical formulas can be developed for any continuum model of
a structure for which mode shapes are known.

3. The value of a mode (with respect to a quadratic performance measure) is
related to the product of the mode shape at the input output locations

f (D-16).
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APPENDIX E

CASE STUDIES OF MODEL REDUCTION OF FLEXIBLE
STRUCTURES BY MODAL COST ANALYSIS

Prepared by

R. Skelton, Principal Investigator
A. Yousuff, Research Assistant

M. Dornseif, Research Assistant

Prepared for

Control Dynamics Company
Huntsville, Alabama

February 1983
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Abstract

The purpose of this report is to present a detailed account of
the application of modal cost analysis for lightly damped flexible
structures. The report presents detailed data for model reduction and
control design for two different structures and two different model
reduction methods.

The first structure is the simply-supported Euler-Bernoulli beam,
chosen for minimum complexity to gain insight into the methods. The
secqnd structure is a truss structure for a solar optical space tele-
scope, chosen for more practical applications. The finite element
model for the telescope was provided by C. Draper Laboratories.

The first model reduction method is called modal cost analysis,
(MCA), a technique which most readily applies to lightly damped structures.
This technique decomposes the mean-squared outputs as a sum of contribu-
tions from each mode of the structure, and retains the modes making
the largest contribution. The second model reduction method is called
cost-equivalent realizations (CER), a technique which matches the overall
mean-squared value of the outputs.

For 1ightly damped structures, the modal cost analysis is computa-
tionally simpler and performs just as well as the more sophisticated
cost-equivalent models. For systems which are not lightly damped the

cost-equivalent models have advantages.
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1.0 INTRODUCTION
When compared to other large scale systems, flexible spacecrafts
have some peculiarities which can make control more difficult. In
this discussion emphasis is placed upon the time domain and suboptimal
Linear Quadratic Gaussian (LQG) methods, with special attention given
to the effects of modeling errors. These effects are discussed in
light of the model reduction problem, stability, and control design.
Flexible structures and their dynamics have been studied well
over a century. However, only recently has there been an interest
in the active control of flexible structures. Such interest was
piqued in the 1960's by a flexibility-induced instability in USA's
first satellite [1], and more recently by sophisticated requirements
for precision controlled structures in space for astronomy, communication
networks, near-earth scientific studies, and space solar power alter-
natives, [2]. The rapid development of computers and control theory
in the 1960's has encouraged active control applications for other
structures as well, such as flutter suppression in aircraft [3], and
active damping of bridges and tall buildings [4]. This is not to say
that active control is needed in every structure, however, and there
is no clear means to make the decision of when and how much controtl
effort is needed in a structure. There is a need to study the dynamical
properties of the mechanical system with a view toward discerning what
improvements in performance can easily be made by redesigning the structure
and what improvements must be left for active control functions. This

benefictal interaction of the dynamics and control disciplines in the
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development of a rational design methodology has not yet occurred
to any mature degree. Usually the structure designs and the control
designs occur sequentially. This luxury cannot be afforded in the
future, as stringent requirements force us to provide better coordination
between structure design, control design, and controller software
design.

Some of the reasons that the control of flexible spacecraft
can be a difficulg task are briefly described by the following three

problems.

(i) The Model Error Problem

The space structure is usually constructed of lightweight materials,
and thus the assembled structure is very lightly damped. This uniqueness
of 1ight damping for the space structure makes the control design
extremely sensitive to modeling errors, since the slightest perturbation
of truncated modes by control action can shift these eigenvalues into
the right half plane. Also there is the usual uncertainty in the
computation of the modal data. This problem is especially critical
for spacecraft since modal data uncertainties cannot be removed before
flight, due to the difficulty of testing the extremely 1ightweight

structure in a 1-g environment.

(i1) The Limited Controller Software Problem
The practical limitations of memory and speed of on-board computers

mean that only controllers of constrained dimension can be considered,
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These constraints can severely reduce the performance capabilities
of the controlled system due again to the effect o¥ modeling errors C
imposed by the controller order constraints. (An infinite dimensional .
system controlled by finite controllers immediately suggests that '
“optimal" state feedback solutions are not going to be realized).

Thus, limited software serves only to compound the model error problem

by constraining the order of the controller and by adding delays in
the feedback loop. . ’ 'i 4

(ii1) The Performance Requirement Problem

BTV . .
L JJ-;‘.._-  —

Of course the model error problem and the 1imitations of soft-
ware pose no serious threat to the mission if the performance requirements

are quite lenient. Thus, the degree to which (i) and (ii) pose problems

‘. . .
. 1

. .o E
Al 4

is directly related to the severity of the performance requirements.

Therefore, early researches on the subject have sought to help with

the tradeoffs between performance and modeling errors (including those

induced by controller software 1imitations).

s &

The report is organized as follows. Section 2.0 derives the
equations of motion for a simply-supported beam, Section 3.0 describes iiizﬁgi
the model reduction methods to be used. Section 4,0 designs controllers °
using the reduced models and evaluates them using the full evaluation
model. Section 5.0 describes the solar optical telescope application,
and Section 6.0 summarizes the report. All proofs of theorems are _
contained in Appendices so as not to impede the tutorial nature of

the text. -
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2.0 EXAMPLES OF DYNAMIC SYSTEMS

The purpose of this chapter is to develop models for several dynamic
systems. Thesa models will be used throughout the report to illustrate
various control concepts. It is hoped that repeated use of the same
examples will further enhance the educational process. By using examples
which have paysiczl significance and by using the same examples to illustrate
each new control concept, the bridge between mathematics and control engi-
neering is to be built.

For decades control theory has bteen treated as a discipline to be
applied gftar the model is developed. This point of view must necessarily
be chénged for the simple reason that the mathematical models never describe
the physical phenomena exactly. There are many different models that could
be developed for a given physical phenomena, and persons developing the
models could make appropriate modeling decisions if only they knew the
particular purpose the model is intended to serve. If the purpose of the
model is to develop a control policy then the conclusion is that the mocai-
ing problem and the control problem are not independent. This leads to
the following discomforting reality: The particular control policy cannot
be developed without prior knowledge of the model, and the best model for
the situation cannot be developed without prior knowledge of the control
policy. This "chicken and egg" dilemma occupies much of the current research
on control theory. For introductory purposes, however, we shall present
in this chapter simple models of physical dynamical systems and we shall
pretand that these models are correct and hence that their accuracy is
not dependent upon the control policy. In other words, we shall momentarily

invoke a “separation principle” between the modeling and control problems.
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2.1 A Flexible Structure o
In many applications of control and estimation theories the physical

process is described by a set of partial differential equations. Examples ]

include flexible structures, fluid dynamics, electromagnetic fields, etc. ®

This Section develops the partial differential equations for the elastic .‘

structure of Fig. 2.1 _1

3

@]

1

1

®

g

g

E: elastic '

structure °

with mass o

density o(r) o

Fig. 2.1 An Elastic Structure

.

The reference in which the generic position vector r 1s described is

inertially fixed; and the constant vector r s chosen so that u(r,t) is a

vector of short length to the elemental volume. In this way the equations '
of motion can later be linearized in the small variable u. -
Hamilton's principle states that the first variation of the . 4
*action® L is zero along the actual time-varying path of u(r, t), where the ; .?
"action” L {s the difference between the kinetic energy T and the potential 1
)

energy U, plus the nonworking constraint forces W. Thus, from Hamilton's

principle
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tz . A T
cf L(u, p, t)dt=0, L=T-U+W (2.1.1)
t] |
The kinetic energy is the norm of the velocity vector ;;_(L,t) over the entire v _-.j'

structure, weighted with % p(r). We shall now assume that all vectors u and

r are described in the same given reference frame, and we shall drop the

-
M L . N
L . .
. ety .
O . P
‘ LA ‘] Ty
U SU A ‘Lt

basis vectors. Hence we denote p_ and r
r-eTrser-l-er-l-er
- = =11 =2 =33
(2.].2)
=ely=e +e +e,u g |
EFEw " TR¥R"3% '5.1
simply by usR3 and reR3 with the basis e understood. The kinetic ’
energy - may be written . .
. » L
. 2 1 ‘T . .\-
T = [li(r.t)]l5 =5 [z 8 (rt) o(r) u(r,t)dr  (2.1.3) «
7P (r) ' RS
] .Q
SN
s
L where dr denotes a volume increment. The potential energy is the norm of :-"‘.j'.'l-.':"_
1 ’ LT
I the displacement vector u(r,t) over the entire structure, weighted with S ]
: [ ] .
¢ - - Do
&- %K where K is a symmetric matrix operator defined to include the boundary s
S -
{ conditions. We will not pause here to elaborate on this definition of K.
Instead, we shall construct K for an example. Now write the potential ." .
; - _
g energy 1
= >1
} "
*
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1 T p '—-'
U=t} - = 3 fgul(rat) kulr,t) er (2.1.4)
. 1K
. L -
- The first variation of (2.1.1)isgiven from the calculus of variations -f.::f‘
t." by
{ t2 2, t e
T' ) f L(uo Uy t)dt = . Gul (L - — ) At t + : .
1
- . (2.1.5)
3 tz
Y ]
o where J
L= [ sTieer - H wkudr + [ fTuar (2.1.6) g
E E E \ Py
Hence, from the rules of differentiation \<
&- ! u dr 2.1.7 B
aﬁ Epll ( eale ) L . ’j
-:L = -[ Kudr + I f dr - (2.1.8)
¥ E E AR
L t iL ; .. ®
See from (2.1.5) that for variations which satisfy o= &u[,“ = 0, (L - u) R
1 S
At :? = 0, and for arbitrary variations ap between t:1 and tz the requirement :
(2.1.1)dictates that .1
]
o
)
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which leads to (using(2.1.6)-(2.1.8))

-f Eudr + [ fdr - f p;dr =0 (2.1,10)
E E E

or equivalently,

o(r) B(r,t) + Ku(r,t) = f(r,t) (2.1.11)

with initial conditions, u(r.0) = u (r) » u(r,0) = u (r) .
This {s the partial differential equation describing the dynamics of the
elastic structure of Fig. 2.1.

The Ritz method [5 ]:1s now {1lustrated to convert the partial differen-
tial equation(2.1.11)tcan ordinary differential equation. Let the set of
admissible basis functions vi(r), i=1,2, «..,=. be compZete(in the sense

for arbitrary "square-integrable" |, min Hu-¢QIl2 = 0). Then
{...
q o
i

v(r) & (e, (r) 4 ¥y(r)s ooo w(r)] (2.1.12)

and in the mean squared-sense

u(r,t) = ¥(r) q(t) (2.1.13)
Substitution of (2.1.12)-(2.1.13) into (2.1.11) yields
o(r) ¥(r) § + Ke(r)g = f(r,t) (2.1.14)

Multiply (2.1.14)from the left by !T(r) and integrate (2.1.14) with respect

to the volume of the structure E to obtain

[[ W (r) olr) ¥(r)drl§ + [[ v (r) kelr)drlq = [ T (r)f(r,t)dr
E 13 E
124 (2.1.15)
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or, simply
Mg + Kq = §(t) (2.1.16a) ;;::;;
u e f T (r) o(r) ¥(r)dr (2.1.165) 1
E o
[ e
« K=|v(r) Ke(r)dr (2.1.16c)
; E

§(t) = [EvT(r) £(r t)dr (2.1.164)

-
L

where M is commonly referred to as the "mass matrix" of the structure and K

is referred to as the "stiffness matrix" of the structure. f? the forces

YT Y Ty

. f(r,t) are applied only at discrete points (rys Fps --es ) On the structure - .1
then :-‘i
N m ;
{ f(r,t) = 2 fis(rori) . 11 = fi n, (2.1.17) R
(- 121 _ T
i: where f, is the force applied in the n, directfon at the spatial location 3
: ry- Now(2.1.16i becomes ‘
Mq + Kq = Bu (2.1.18a)
where
ul = [f], £, .en 1] (2.1.180) -
ﬂ- 8= [YT(P]). YT(PZ). cee !T(rm)] (2.1.18¢)

Note that if torques rather than forces are applied to the structure,

the right hand side of (2.1.18a) 1s changed as follows. Lat the torque T, -
applied at r] be described in the 1imit as ar - 0 as a couple applied at -

3 rt %-Ar (that is, equal and opposite forces of magnitude f] are separated

;’ by the small distance ar, hence T = fiar). Thus, for this couple the right
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hand side of (2.1.18a) becomes

Bu 1im

T T . _
= arsg [V (F) )+ 4 ()] f12-f rpErytar

Ts= f]Ar

AR (T GRS IR TR ) L

T
= 2 (r) T(rt) = 8T(r))T(rut) = #7(r)T, (2.1.19)

where ¢ 4 3p/ar. Therefore, we shall interpret the right hand side of (2.1.18a)
as applying to either forces or torques simply by substituting Ti for fi and

oi for 2 where a torque is applied;

2.2 -The pinned elastic beam
The above equations of motion will be fl1lustrated for the simply supported

The beam has deflection y (r,t) only in the plane of the

The kinetic

beam of Fig. 2.2.
paper, where r is the position from the left end of the beam.

energy of such beams is given by (2.1.3)

| r = 451 |

y & u(r,,t)
z 8 ulrgot)

Fig. 2.2 Simply Supported Beam
126
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L

T = %-[ p(l‘) ﬁz(r.t) p dr (2.2.1)

(]

A uniform mass density will be assumed so that p(r) = p = const. The

potential energy for the beam is*

L2
ueg[ e untl? g (2.2.2)
Q ar

where EI, the modulus of elasticity, will also be assumed constant.

Integrating (2,2.2) by parts twice leads to

= et Sty P gy Suntl gt @)
.or 0 r °

°

4
+ f' (e t) 3urst) gq 1 ep
o] 3!‘4 2-

But since the beam in Fig. 2.2 has the bdundary conditions

2 2

u(l,t) 'é t) - 3%u(o,t) g ti.o (2.2.4a)
ar or '

u(L,t) = u(o,t) =0 (2.2.4b)

(2.2.3) reduces to

4
U= El f’ w(r,t) 22uat) g (2.2.5)
0 ar

Thus, comparison of (2.1.4) with (2.2.5) leads to the conclusion that the

operator K for the beam of Fig. 2.2 is

+The assumptions made here are that both the shear deformation and rotary
fnertia effects are negligible. This {s the so-called Euler-Bernouli
beam (61].
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K= EI 3 - (2.2.6)
r

By comparing (2.1.4)with(2.2.3) it is now clearer what is meant by the
earlier statement that the definition of the operator K must include the
boundary conditions.

Now the equation "of motion (2.1.17 canbe written using (2.2.6) and the

4
notation [ ]"" = a—[4—1 ’
. r

pu(r,t) +El W(r,t) = f(r,t) = f(r,t) &(r-r.)  (2.2.7)
y= u(rost)

where f(rc.t) is the applied force at location r, in Fig. 2.2 and y ¢ u(ro,t)
is the displacement at point Fo* The boundary conditions for (2.2.7) are
given by (2.2.4).

Using the Ritz method (2.1.13)we shall investigate the solution of (2.2.7).

Consider first the homogeneous solution,
p¥(r)a(t) + EI ¥™ (r)q(t) = 0 (2.2.8)
For convenience, define the scalar "'iz by

puiz vi(r) = EL ¥ "(r) , ¥;(L) = ¥;(0) = ¥j(L) = ¥{(0) = 0

(2.2.9)
where the boundary conditions on the ¥, satisfy the physical con-
straints (2.2.4). The matrix nz will be defined by
2
d
a? = ws . (2.210)
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Now (2.2.8)may be written

el - - 2
o¥(r) [G(t) +a%a(t)1 =0 =p § v,(r)la, +w. a1 =0
i=1 (2.2.31"
But since the ¥.(r) are linearly independent, (2.2.17) requires that for all ;
L )
i=1,2, el ‘
3;(t) + wa (t) =0 (g (0), (o) specified) . (2.2.12) 1
|
®
Our first trial solution .for (2.2.9) is ]
!i(f) = A; cosh g,r + B, sinh g,r + C; cos g;r + D; sin g;r ]
where e? 4 pmiZ/EI . Now to check to see if this is an admissible solution \J
we must satisfy(2.2.9). The four boundary conditions require ]
¥.(c) =0 =A, cosh0+B, sinh0+C, cos 0+D, sin0 y
i i i i i °
A G
Likewise,
" = = -
\!i (o) = 0 Ai Ci .j
Hence A; = Ci =0 . Now, }
'i(L) =0 = B; sinh BiL + D, sin 8;L ]
°
Add these two egns. to get 28i sinh BiL =0, = Bi = 0. F}ance, Di sin eiL =0 1
®
also, the nontrivial solution of which is sin gL =0or i 1
= i” 2 -l -‘1
Bi r » i = ]” 2. 3’ seees W ( .2. 3)
4
®

Henca,

T Y N L o VW T VW T T
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v.(r) = D, sin {l r (2.2.14)
¥(r) = [y (r)y ooy ¥ (r)]
and from (2,2.9)

2 .2
El .
mi=/.EpIBi =/ B . i1, .,

which establishes the frequencies of vibration of the simply supported beam

(2.2.15)

of Fig. 2.2.-

We shall make the columns of ¥(r) orthogonal. That is,

the columns of ¥(r) are orthogonal on reE (r ranges throughout the elastic

structure E) subject to the weight g(r) if

A= [ ?T(r) g(r) ¥(r)dr (2.2.16)
E

is a aiagonal matrix. Note from (2.1.16Bthat (2.2.16 is simply the mass
matrix of the structure if we choose the weight g(r) = p(r), and (2.2.16).
is the stijfress matrix if we choose the weight g(r) = K. We shall choose
g(r) = o(r) so that A is the mass matrix. For the present example ?i(r)
is given by(2.2.14)for some unspecified D;- Substituting(2.2.14)into

(2.2.16) yields
D, %L

Ai' = fL pD% sin il-r sin il-r dr = p-l—- S,
J o L

L > i3 (2.2.17)

1f we choose Ay =1 (i.e. normalize the mass matrix to identity M = I),

then(2.2.17) yields
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Di = /-‘;—EL » 1=1,2,... (2.2.18)
Hence, from(2.2.15),(2.2.18) the it wmode shape" is
_ . im .
, 7. (r) = /—EL singz-r, i=1,2, ... (2.2.19)
The homogeneous solution of(2.2.9) is now completed.
;‘ ‘ The homogeneous solution of(2.2.12)is
!
qi(t)- = (J_i sin (mit + ¢i) “ (2.2.20) ' j
4 . 4
F. as can easily be checked by substituting into(2.2.12)if Q; and ¢; are chosen .j
E to satisfy the initial conditions, Qi' sin % = 94o° in cos ¢, = aio‘ That '
is,
¢ -
. : 4
- - 2 2, 2 - -1 . ®
3 0 = fud + 420" . 4 = tan g vi/dye - (2:2.21) SO
Thus, the complete homogeneous solution of (2.2.7) is .
- ]
B(rt) = ¥(r)a(e) = §wy(r) () .®
e 7 A sindrg s i
izl /f:sm T Q; sin (wgt + ¢;) (2.2.22) L
S e
The first 5 mode shapes({:2.19 are plotted in Fig. 2.3. 1
T
‘,‘. Models are constructed for a specific purvose. No single model is ade- ) "~,
- 4
f quate for all purposes. Now suppose one is interested in using the model of - .4
: the beam to study the RMS or mean-squared deflections and their ratas over _'.T'W
: the surface of the beam, during the interval t ¢ [0, t.]. That is, suppose i
®
one is particularly interested in computing ®
]
]
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Fig. 2.3 Mode shapes for pinned elastic beam
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& te 2 . 2
v £ (utretdllg (ry + N ratdllg (p)dt (2.2.23)

for some weights gl(r), gz(r), where the norm of u(r,t) on the domain of r

is defined by

latrat) 2 () 2 fTtrtig rutr, tyar (2.2.26)

From (2.1.3),(2.1.4)notethat the choices g](r) = -12-1.(, gz(r) '%p(l") yields

Vs [T(T+U)dt, (although we do not have to restrict g](r). gz(r) to these
o

choices). Now substitute u(r,t) =¥(r) q(t) to get

t . ’
ve{ ffE[clT(t)‘l’T(r)q-l(w)v(r)q(t) + éT(t)vT(r)gz(r)v(r)&(t)]d_r dt

0 (2.2.25)
For g1(r)= %K , qz(r) = % p(r), V becomes
te 1 Ty ~
Ve[ "[q (t)kq(t) + q (t)Mq(t)]dt (2.2.26)
]

Now if ¥(r) is normalized so that

W=l ,  k=al=diaglods .. s wl) (2.2.27)
then
& ; (a,2(t) 2 + .2(0)dt = ] (2.2.28)
V= 0:2(t)w2 + §.2(t))dt = T v 2.
o gfy 4 U TG 121 i
where
te 2.0 2. .2
vj = g (qi (t)“i +q (t))dt (2.2.29)

From (2.2.20) integration in (2.2.28) yields
.. 202
vy = 0,50, t, (2.2.30)

But since Qiz s qiz(O) + &12(0)/“"29
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Vi = [mizqiz(o) + &iz(o)ltf

cost analysis later.

and gz(r) in (2.2.23) such that
g1(r) = gi(rdélr-r)) -, gylr)

Now@.2.25) becomes

coordinates is made
q = En

3 where E is chosen such that

r.
ETME = 1

o

= Ter aal = 2 2
F E KE fQ diag- {U] o--ﬂlN }
.l
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Hence, the energy in each mode T{0) + U(0) = &iz(O) + mizqiz(o) stays con-
stant and this magnitude determines the critical modes of the structure with
respect to the performance measure (2.2.23). Due to the special structure
assumed for the mass and stiffness (matrices) in (2.2.27),the q; are mocal

coordinates and Vi in (2.2.31)are referred to as modzl costs. More about modal

rather than in the distribution of the deflections over the entire structure

as in the previous example. For this new performance measure choose g-'(r).

= gz(ro) G(r-ro) (2.2.32)

e T . -
v ',{ (a'(t) !T(ro) g(ry) ¥(r )a(t) + a'(e) J(ro)gz(ro)f(ro)a(t)Jdt

In order to examine the mc %.. contributions in V the transformation to modal

(2.2.31)

Now suppose a different performance measure is of interest. Suppose one

is interested only in the deflections and rates at the location o (Fig. 2.2),

SION SR

(2.2.33)
o
T e
1
]
. ]
(2.2.35)
]
) e
______ o 1
Sl .
o ,'-._ R 1
T T A I R S |
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b -
[ )
Y Define
1 2 ETy
Y o) v (ry) g9q(r,) ¥(r,) E —
- \ (2.2.36) '
: 0, 2 ¥ (r) gy(r) ¥lry) €
r‘
then .
~:  t N t .
f T -T . f LI SeunT
[ - Ve[ (n'ggn+ngn)dt= T [ (anQ +n.n.0, )dt RSN
. o ! 2 f,0900 3Ty T3y S
g - 5 . (2.2.37)
JI where =, + wi“ng = 0, 1i=1, ..., N. The contribution from UFTILP is ol
h -
b t -
- [ F.T T, = < ¢th )
. v, .{ (n Q]ini +n in"i) dt (Q]i i col. of Q) (2.2.38)
L. where the modal cost Vi satisfies the cost-decomposition property o
®
E ? (2.2.39) ”
L. v = U. L] * 9
-... i=1 1
hi To simplify the expressions in this illustrative example we assume ni(o) = 0,
- n;(0) # 0. Then the integral becames
. v [;‘?(o) Q ﬁf(o) 2, 1t (2.2.40)
: = + ek e 0
LR 144 2 %4 f
=12 2 -
Vi =z r°(00te [0y Juy®+ 0y 1] (2.2.41) RN
ii ii -]
for any tf satisfying 1
3
Zuitf = aw - L)

(mi - (ﬂj) tf = B“ (202042)

(“’1 +Wj) tf' h e

1
J

for any integers a, 8, vy. This condition on tf allows the crossproduct

terms between V, and v3 to be zero. Thus V, in .2.38) is presented as an

YT TYTY ToY vy

example and not a general result in order to discuss the concept of modal

¥
"t

S e e A
LRy . N N . .
R . - .
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cost analysis. The general theory is presented in a latter section. Note

that the importance of mode i is measured by the magnitude of Vi'

To investigate the forced solution of (2.2.7), first assume a

solution of .the form
u(r,t) = v(r)q(t) (2.2.43)

where ¥(r) is given as before(2.2.19), and q(t) is unknown. Since the
!i(r), i=1,2, ... forma complete set they may be used as basis
functions for the forced response as well. Multiplying(2.2.7) by

;T(r) and integrating with respect to r yields the earlier result (2.1.15)
repeated here for the beam example with a torque applied at r = r.= 0.

(see Fig.2..2 and Egs. (2.1.18), (2.1.19)),

M3+ Kg = 9 (r)T(r,t) (2.2.44)

The unit normalization of the mode shapes (2.2.16) yields M = I, Hence,
- 2 T
qi(t) + w; qi(t) = 9, (rc)T(rc,t) (2.2.45)

where the definition of "iz is given by (2.2.9), (2.2.15). Note that the

ith mode shape at the point of application re of the force

av,
g i ir [2 i
oi(rc) = ,r- rc- - /—DL cos = T, (2.2.46)

2 KL
is zero if Pe ® 53

the 1th mode slope, Thus, if a torque is applied at a node of made i, then

for any integer k. These points are called "nodes" of

the torque cannot excite mode i. A systematic way to deal with these events

will be developed in the next chapter.
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2.3 State Equations

The equat1ons of motion are now summarized by

q + il ay =0 TR )Trut) 4 121, 2, e (2.3.0)

A -
¥ = ulrst) = Y(ro)q(t) I v(r) q(t)
i=1
2 & ulrppt) = ¥roda(t) = T ylrplag(e)
A set of first order differential eqs. can be generated from (2.3.1) as
F follows
r — —— —
‘ 2 . T
. "l\ ~yp 0. % by
Em 9, (0] 1 q, 0
| . 2 . T
- 0 b
t %2 w2 2 2
?l - B . + | - £(r
dt L] L] *
> L ] L ] / * (2 3 2)

n (ro,t) =Tp, 0 |p, ol......T a1
3 u (rpt)/=(my Ofmy O i &
ﬁ' qZ
‘ *
>. qz
3 i
F. .
- .
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where

= o,T(rJ

Py = ¥(r) My = ¥i(ry)
The parameters for the beam example is given by

L=n, p=2/L, El=p, r = .45, r. =0,

0 C
ro= L35
and for the choices
w; = 2, p; = sin (.45¢1), m, = sin (.35vi), b, = 1.

Note from (2.2.44) or (2.3.1) that the number of variables (q], Qgr vees qN)
required to writz the differential equations is N, whereas, the number of
pieces of infbr&ation required to solve the differential equations (2.2.44)
or(2.3.1) is 2N (both q;(0) and &i(Oi must be specified). That is, the
order of the system of eqs.(2.2.44);(2.3.1)is 2N if q ¢ RN, and the order
of the system dictates the number of necessary initial conditions required
to solve the equations(2.3.2). The variables q; in(2.2.44 are called
configuration variables in dynamics [ 7 ]J. If the system (2.3.1) is put
into the first order form (2.3.2, then the variables (q;, 6], a5 &2, cees
Ay &") = x7 are called the stats variables.

For the simply supported beam (2.3.2) the state equations are

x = Ax + Bu . x:RZN,T.(rC,t)SueR']
y = Cx wlrgt) =y ¢ Rl (2.3.3)
2= Mx u(r“,t)tch
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where
e — - -
0 1 0 %
2
| 0 b T .
1 9
A= 0 1 »B=1{0 » X ={ g, (2.3.3)
4 T .
—- " LT
c = [p] 0 p2 0 p3 ° o e e Y ] » M = [M] 0 mz O m3 L[] - e - ]
We now add noise tao the actuators and sensors to make the model
(2.3.3) more realistic, Define w(t) as a zero-mean white noise with .
intensity W. That is,
Ew(t) =0 (2.3.4a)
E w(t)w (t) = We(t-1) (2.3.4b)
Ewlt)x'(0) =0, t>0 (2.3.4c)
where E is the expectation operator
EL]4 [°(-1f(e)de (2.3.5)

-

where f(3) is the probability density function of the random variable [-],
as the sample space ranges over == < £ < = ., The torque actuator which

produces the desired control torque T(rc,t) in (2.3.3) also produces the
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;:Z_- undesired "noisy” torque w(t). Hence T(r., t) is replaced by T(r_,t) + w(t). RS
ft That is, Bu is replaced by Bu + Dw where D = B in our special case, although .
disturbances from other sources would call for a more general D # B, :4
’E The noisy measurements are described by 1
2 ) -u‘

Ev(t) =0 (2.3.6a) |

E v(t) vI(z) = V&(t-1) (2.3.65) )

E v(t) x'(0) = 0 (2.3.6c)

1

E v(t) wi(z) = 0 (2.3.60) .

Equations (2.3.4c), (2.3.6¢c), and (2.3.6d) result from the assumption that ]

the random vectors x(0), w(t), v(t) are assumed to be independent. The }

[ J

complete system description is now given by ]

X = Ax + Bu + Dw '

y = Cx (2.3.7) o

zZ=Mx+v '-.'jj"ii

where w and v are described by (2.3.4) and (2.3.6). Models of the form . 1

(2.3.7) will be used throughout the sequel, The performance of the sys- ‘}

tem (2.3.7) will be measured by -

vilimel rtyToy + uTRu)at (2.3.8) Ny

: 0 ']

' where the notation IIyllg = y'Qy will often be used to illustrate that ]

the norm of the vector y is of primary interest in the control objective, '.’l;i

;'c The term llullg = uTRu measures the amount of control effort being used " O+

i to keep || yuf2 small. In the first of our studies we shall set u = 0 in R

’ order to study the open-loop situation - the behavior of the structure J

;_0 without feedback control. Our great difficulties begin with the recognition , .1
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that the model (2.3.7) is of order 2N and even for the simply supported
beam example N+=., In order to make our analysis and control design trac-

table we are forced to consider the topic of model reduction;

1
b
>
b

3.0  MODEL REDUCTION BY COMPONENT COST ANALYSIS

3.1 Introduction

Numerous schemes for model reduction exist in the literature, ; ':
Many of these schemes are not applicable to the model reduction of {:
flexible space structures, due to the large dimension of these models. _3
Modal Cost Analysis (MCA) is one method which can be easily applied ®

to such systems. MCA is a special case of Component Cost Analysis 1

(CCA), which also offers a theory of 'Cost Equivalent Realizations' ;

(CER). °
After a brief introduction to component cost analysis, we present

the MCA, and the CER-theory and compare these two methods with the aid

of the pinned beam example. [

3:2 Brief Description of CCA

Basically, CCA considers any system as an interaction of different

components constituting the system. The definition of these components
is up to the analyst: they may have physical significance, or they

may be defined for mathematical convenience. For omy choice of

components CCA assigns a metric called component cost to each

component. These component costs measure the significance (contribution) ) .f3

of each component to a predefined quadratic cost function. Then, a )

L reduced model of the given system is obtained by deleting those compo- -

nents that have the smallest component costs. '
Mathematically, the concepts of CCA are explained as follows:

Let a state space description of a time-invariant system driven by

@ e,
.
. oy Pyl RN ¥ Y ‘.‘-' Y
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zero mean gaussian white noise process w, with intensity @ be given as

Xs= Ax.+ Do XE Rn, W e "

(3.2.1a)

y=cx 5 ye RS

(one may specify appropriate initial conditions on the states X;
however, for the infinite-time prcblems considered herein, these initial
conditions become irrevalent). The system (3.2.7a) can be equivalently

expressed in its ‘component' form as

p n, P
i.’i A..x.+0.w;x.eR1,Zn.=n
P55 T i 5 j=p
(3.2.1b)
P
/" 321 I

where the states x5 define the i-th 'component',

Now, let a cost function associated with (3.2.1) be given as

' t
veilm v vt [ lyol? (3.2.2)

0

where > 0 is a weighting matrix and where II-HS is the weighted Euclidian

norm. The component costs Vi’ associated with each component x; are defined by

-~ A s
y, = L lim E{s—gﬁ—l x;}o 121, 2, .0, (3.2.3)
i

and are calculated according to the following component cost formula.

Cemponent Cost Jormuic

i = Tr [cTQ:t]ﬁ, f21,2, ... (3.2.4a)
142
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where X, the steady state covariance of the states, sa:tisfiss

xaT + AX + Dwo' = 0 (3.2.4b)

Clearly, since V= Tr [CTQCXJ, ‘[8] » the component costs v satisfy

(Note:

the ccst deccmpesition property

V= v (3.2.5)

in Section IL, this property was shown to hold for the special

case of modzal costs, (ref. eqn. (2.2.39)).

For certain definitions of components, it is possible for a

component cost 01 to be negative. However, for the ccmponents defined

in this report, these component costs are noﬁ-negative. Hence, we

will assume for clarity, that Di > 0.

Based upon the definition of component costs, the CCA_aTgorithm

for model reduction is therefore characterized by these two steps.

I.
e
{ 11.
o
°
F
y
/

Tre Basic CCA Mcdel Reduction Algorithm

Compute the component costs Di by (3.2.4) and reorder the
components x; 1n (3.2.1b) so that

- -

V]g_azg_ cee 2 3_&'.”3_...3_;/ (3.2.6)

r P

To obtain a reduced model retaining only r ccmponents, delete
the (p-r) components associated with the (p-r) smallest component

costS from (3.2.1b). The reduced model can then be written as
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Xp = Agxg * Dgws xpeR ©  n =1£1 ny
- (3.2.7a)
¥ = Cexp
where [ N n
\ At Az A \ E
Ap = Al Ay Arp = |7
__Arl Ar2 : Arr_J _P(_ (3.2.7b)
4 .
Ca . ¢ . c.l .

Cost Perturbation Indices:
When comparing the reduced model (3.2.7) with the original

model (3.2.1), a convenient measure of ‘model error' is defined and

calculated as foliows.

Definition 3.1 The error associated with the model (3.2.7) produced

by the CCA algorithm is measured by the Cost Perturbation Indez, q

A
sy [u-vel (3.2.8a)
where Va is the cost associated with (3.2.7) defined as
4 1im 1 (% 02
Va = tow EVR(E)Y 5 Vp(t) = ¢ Iolly(c)llo do (3.2.8b)

I the disturbable subspace of (3.2.7) is asymptotically stable, then

- T
Ve Tr[CRQCRxR] (3.2.9a)
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where XR, the steady state covariance of Xgs satisfies

T P
XgAg *+ AgXp + Dpulp = 0. (3.2.9b)

Remark: The cost perturbation index q measures the difference in the

overall mean-squared values of the outputs.

Of course, Vg ( and hence ¢) can be computed only after
model reduction. The information available a priori can be used

to compute only the predicted cost perturbation index ;, defined below.

Definition 3.2 The predicted cost perturbation irdex ; is defined by

3 &5 (v-ip) (3.2.102)
- A 7'- a
where Vg = 121 V- (3.2.10b)

Thus, CCA offers a simple way of 'pricing' each 'component' of
a system, thereby identifying components that can be deleted to form
a reduced model. It also offers convenient indices for the evaluation

of the 'errors' in these reduced models.
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3.3 Modal Cost Anatysis (MCA)

3.3.1 General Formulation:

T—

In the context of model reduction, there may be considerable
freedom in the definition of ‘components’ before model reduction begins.
That is to say that the definition of components is up to the analyst.

. For mechanical systems described in matrix second order form,

it is customary to obtain its reduced model by ignoring high-frequency

RS EANNOA0S - e

modes, without regards to the performance objective (cost function).
Modal Cost Analysis (MCA) was introduced to systematically iden-
tify those modes that have the least significance

in the cost function. MCA is a special case of Component Cost Analysis.

In MCA, a mechanical system described by N-modes, is deccmposed into

N-components Xi» i=1, 2, .., N, where each component X; is defined by

we
-

R ,i=1,2, ... N (3.3.1)
By

where the i-th modal displacement is ng and the corresponding rate is

ﬁi- (Refer to (2.2.34) and (2.2.38)). The CCAof these components X, is
called MCA, The matrices in the 'component-descriptions' (3.2.1b) of

the system take the form
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0 1
As e |, eR2%2 (3.3.2a)
- -2 L.
Y3 R b
Aij =0 J#i
0 2xm
Ui = T eR » Ww=u (3-3-2b)
b,
i
¢; =[P, P;] ¢ RXX2 (3.3.2¢)
where the output y is related to the modes by
N N .
= '
y Zl Pi“i + izl Pi“i' (3.3.3)

In order to compute the modal costs Ui, one would then use
the equations (3.2.4a) and (3.2.4b). It is possible to obtain
c¢losed form expression for modal costs Ui in terms of the modal
data. And, this expression greatly simplifies under certain

conditions on the system, as given below.

Theorem 3.1

If either (a), (b), or (c) holds:

(a) leJb. =0, i #j (input decoupled modes)

T LR
;l (b) C¥ij =0, 1 #Jj (output decoupled modes)
(c) g+ 0, 1=1,2, .., N (1ightly damped modes)
2 2 T Tap .
- with w1 fulj and P 1QPj = Piqu ’ j # i
147
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then the model costs are given by SN

Vo= — 2, 215002 S

Y 7 (Pl +u§HPsHG llbillg >0 (3.3.4) :

84w = S

Remarks i :
1) Since the modes, by definition, are dynamically uncoupled, mode .4
T

1 is uncontrollable (unobservable) if and only if bi =0 ' .;gi

(P; = 0 and P; =0). Hence, Di = 0, 1f and only if that mode q";jT

is either uncontrollable and/or unobservable. Note from the defi- ;"';j

nitions of by in (2.3.2), and !i(rc) in (2.2.46) that if a force
{s applied at a mode of mode 1, then bi =0, {.e., mode i is
uncontrallable and hence ﬁi = 0. Similar argument applies to
unobservability of mode i. Thus MCA offers a systematic way to
deal with these events,

2) Since the rigid body modes have zero frequencies Gui = Q), by
(3.3.4) they have infinite modal costsif they are both cbserva-

ble and controllable.

4) The computations of the modal costs Di are obviously simple
and can be carried out for any number of modes.

4) Almost all of the flexible space structures have very low
damping (typically gy = - 005) and in most of the applications

PIQ}G =0, 1#J. Hence, for such structures, the condition

(c) of Thearem 3.1 always holds. In the sequel, therefore, we

will assume that this condition is satisfied.

The CCA algorithm for model reduction would then delete those
modes that have the smallest bf to yield a reduced model, The cost
perturbation {ndices associated with such a reduced model satisfy
the following.
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Theorem 3.2 -.
For lightly damped structures, the cost perturbation indices T

associated with the reduced models produced by the CCA algorithm

FA — LRI AR A R A
e.

satisfy .
3 g=q = I U5 (3.3.5)
1 el
- ) NN
r‘ where the set T corresponds to the deleted modes. ' o
r |
{ :
‘ Remarks: )
Li 1) The predicted cost perturbation index is exact (i.e. & = q) and is ]
} ' ®

calculated by (3.3.5)
2) The cost perturbation indices (q and &) are evaluated with respect

to the cost functions (3.2.2).

“a T
. PRSP TR WL N

We have assumed the definition of the output y in (3.3.3), (i.e. P;
and P%). and the weighting matrix Q in (3.2.2) to be arbitrary (without

“
e
.
o
SN
"-\.
L

enforcing any relation to the performance objective (2.3.8 )). Different
choices of y offer different interpretations of the cost function V. For
instance, by proper choice of Pi and P% s V can be made to reflect either
potential energy and/or kinetic energy of the system. Now since the
model reduction decisions in MCA are based upon V, different choices of
V will therefore yield different reduced models.

In the following subsections we will present two cost functions ¢

related to the performance objective(2.3.8) and study their merits.

The cost functions considered are
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a
3.3.2) V=V =Y+l (3.3.6a)
A
3.3.3) vy sy vy, (3.3.6b)
where
t
v $1im l E f ly(o) 12 do (3.3.6¢)
Y e Ty Q
v $iimle ft ||u(o)||2 do (3.3.6d)
U e t o R
A
v, = 'Hm + Ef Ilz(o)llq do (3.3.6e)

and where y, u and.z are the output ,. input and measurements
(2.3.3) respectively, Q and R are the output and input weighting matrices

in the performance objective (2.3.8), and Qz is a positive-definite matrix.

3.3.2 Closed Loop Formulation

Note from (3.3.6) that, since

uc=%+pv=lm-sf{m@nb+pmunh}u (3.3.7)

the cost function V = Ve is identical to the performance objective (2.3.8)
that we wish to minimize by a proper design of a controller. Hence, the
definition (3.3.7) for the cost function is most appropriate.

To write (3.3.7) in the form of (3.2.2) and (3.3.3) requires
the following

y
y = l::l (3.3.8a)
u

Q = diag {Q, eR} . (3.3.8b)

and
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Now, unless a relation between the input and the modes is known in the form

N N
u=-5 g.n,- § g!n, (3.3.9)
=1 v g T

. '

h (3.3.8a) cannot be expressed as (3.3.3). Since the MCA assumes the repre-

sentation (3.3.3), the relation (3.3.9) becomes essential for the application

'
an_

of MCA (with respect to (3.3.7)).
Note that the control law (3.3.9) assumes that the modal displacements

-
. .
PR
oo
PN
@
[SNIINSY. W P S

? ny and the rates '.‘1 are available for feedback - in general, this assumption
‘ is not valid. Furthermore, in order to calculate the modal gains g; and g%

one needs to solve the following Riccati equation [8] for the full order

p‘ system containing N-modes, (a formidable task when N is large). )

1

KA + ATK - = ker-1BTK + ¢TqC = 0 (3.3.10)

where the system matrices {A, B, C} are as defined in (2.3.3 ), Assume, |

for the present, that (3.3.10) can be solved and that the expression (3.3.9)

..
LA »
®, . . .- o
aaa A i @

can be obtained. With this control law in ‘action', the following repre-

sentation results for the closed loop system. . ®

;1 + (Zci wy + biTg;) ﬁf + (N§ + biTgi) ny

PR, VAN

N (3.3.11) 1
T [ T - N
+ + = '
Jj#
i.]. 2. cecey Nc ,“_]
Clearly, the modes n; are no longer decoupled which leads to the inapplicability - LJ
of MCA formula (3.3.4) to the closed loop system (3.3.11). However, under cer+ain 1

.
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assumptions, one can solve the equation (3.3.10) analytically and obtain
the modal gains 9; and g% so that the resulting closed loop system can
be expressed in modal form. We now enumerate these assumpticms

and discuss them briefly.

Asswrptions for closed loop MCA

(A1) A1l modal displacements n, and the rates ﬁi are available for

i
feedback.
(Az) bi = riei £ ) i = ]’ 2’ LN N (3.3.]]3)
where e is the itb unit vector, i.e.
el = [0, 0 0,1, 0 0] (3.3.11b) ]
i 9 9 ese )y 9 ? 9 @eo P 3 — i
with 1 at ith position, r, 1s a scalar, and S
R = IN ]
- e
us= d1ag {w-l]’ wzz, ssey NNN} (3-3-]]C) __'N_:‘-':
y . =
(A3) y= |P|e2N; (3.3.122) S
N K
where Yp © 151 e; ny > q
N . (3.3.12b) ]
’yl‘ = 12] e.i n.i ’ !—* 7 q«‘
. 2 2 -]
| and Q = diag {m1 »oeees Uns 1, 1, «oey 1}, (3.3.12¢) O
i‘ so that .
N N ) @
‘ 2 2 . 2 =T
: = . N+ . .3.124 -
, v, 121 w; < g izl n (3.3.124) T
’ RO,
- now represents potential and kinetic energy. o ~1
¢ » @
»‘ R
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Discussions

1) (A1) implies that n. and ﬁi are measured directly and accurately.

1

2) Clearly, frem the structure of bi in (3.3.11), assumption (A2) regquires

as many inputs as the modes, i.e., m = N.

This may not happen in

general. However, when one has not decided on the location of the

m actuators, one may consider N(N >m) possible locations for the

actuators (so that (A3) is satisfied) and use the subsequent MCA to

determine (if possible) the best, desired (m)number of locations.

Hence (A2) may be interpreted as "the admissible set of actuator

locations.”

-

Theorem 3.3

3) Since the cost function (3.3.7) is the closed loop cost function,
when (A3) holds, the modal costs Vi represent the contributions of
mode i to the closed locp potential and kinetic energy of the
structure. Hence, (A3) implies the evaluation of the_participation

of the modes in the total energy of the closed-loop structure.

When the assumptions (A1)-(A3) hold, the closed loop model costs are

given by
= __1 2,122 -2 1.2,2 2
Ve, A Gj +griky, o (14 rp kDT Ty Wy
(3.3.13a)
i=1,2, ..., N
where
A
28 (il V2 (3.3.135)
i i i i
s 2.1 -2 2 2 2.1 2172
&y ‘:i {Z(u.l - uy ) + 4;1 wy +;ri } (3.3.13¢)
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4 -2 2
a B -
kiz ~ (mi wj ) (3.3.134d)
] 1
229. 7 o - 2

Remark
Gi and Ei are respectively the closed loop frequency and the

closed loop damping factor of mode i.

With the expressions (3.3.13a - 3.3.13e) available, we are now in a
position to evaluate the closed locp modal costs. Thus, the reduced models

obtained by the CCA algorithm is now based upon closed locp information.

3.3.3 Open Loop Formulation

Even though (3.3.7) is the most appropriate cost function to use for
obtaining reduced models, a number of assumptiops (A1-A3) are needed to
arrive at closed form expression for the closed loop modal costs as in
(3.3.13). These assumptions, in general, may not hold. Hence, by enfor-
c¢ing these assumptions one {is changing the definition of the problem. One
is therefore forced to consider an alternate cost function which reflects
the closed loop information, at least approkimate]y if not exactly.

In order to present such a cost function, consider briefly the subse-
quent controller design process; (the controller design is treated in
detail in section 4). A controller (dynamic or static)operates on the
measurements z to generate the input signals u, as shown in the block

diagram below.

2 —m ]S | ———au
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Now, the controllers that are designed based upon reduced models assume

that the measurement signals available frcm the reduced models are exact. Lo -4
In other words, if 2 is the measursment resulting frcm the reducad modei,
then the controllers are designed with the assumption that E(t) = 2(t).
Furthermore, these controllers are designed to minimize not the actual . a
performance objective (2.3.8) but only its approximation 0, o
V= Yin g E ft Uy() G + ollula) (13} do (3.3.14)
ts & g R ' o

where § is the output from the reduced model.

Hence, the reduced models should reproduce botn the outputs and the

measurements fairly accurately. Therefore, for model reduction purposes,
one should consider not only Vy (defined in (3.3.6c)) but also v, (defined
in (3.3.6e)) in the cost function. The weighting matrix Q, in (3.3.6e)
can be selected as follows. It is well known that, in Kalman's optimal
filters [8], the magnitude of the filter gain on a measurement is

inversely related to the intensity of the noise on the measurement. This

implies that the filter gain on a noise-free measurement is high and hence

this measurement should be modeled fairly accurately by the reduced model.
1

Therefore, an appropriate choice for the weighting matrix Q2 is V7', where
V is the intensity of the noise on the measurements. !ﬁ
With this consideration, an alternate cost function to (3.3.7) is
the following }
Vy = ¥y + 8V, (3.3.15) 01
where .
Y I 2 |
v, = lim Es[ Iyt lI2 do (3.3.16a)
Y e 0 Q
®
i
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;‘ a .1 [t 2 ..
‘ v, & ‘Ilm?EJ lz(o) 12, ¢ (3.3.16) -
) t= 0 v
and where 8 is an arbitrary weighting parametar. The following theorem
results from the application of the modal cost expression (3.3.4). o .
Theorem 3.4 o
For the open loop cost function, defined in (3.3.15), the modal costs p
o

are given by

p 1 2 2 2- 2 2 2
Vo, = 73 Ulrslig + 8llmilI® 3 + w“Clpillg + 8lmEl|©_{)H[b,

Q.‘ 4“ mi3 i Q 1 v'] i 1 Q ” i v‘] l 1“U
(3.3.17) )
i=1,2, ..., N
with .
N N ]
z= 121 m, g ¥ 151 mong v (3.3.18) e
where v is assumed tobe a zero mean gaussian white noise process with SR
. L
intensity V )
]
Remarks ]
1) Unlike the closed loop MCA, there has been no necessity to make any J
special assumptions concerning the system, (except, of course, that ' . .}
the damping is small). . '.;:
)
h. 2) The definition for y and Q which permits the representation of (3.3.15) a j
: ] L J
' in the form of (3.3.3) and (3.2.2) 1s the following - 7
‘ o
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f—'y .
y = , Q= diag {Q, 8V (3.3.19a)
L_Z
and
P [
P, = , Pt = (3.3.1¢b)
m; m%

The proof of this theorem follows from substitution of (3.3.19) in
(3.3.4)

3) Since the expression (3.3.17) for the open loop modal costs depands

on 8, the reduced models will also depend on 8.

Note in (3.3.15) that the weighting parameter g reflects the importance

of reproducing the measurements accurately by the reduced model. For
instance, if a high bandwidth controller is used, then any error in the
measurement produced by the reduced model will be amplified by the high
gains of the controller, resulting in degradation of the performance (if
not instability) of the closed loop system. Therefore, one would choose

a large g8 for a high bandwidth controller. But,since the controller band-
widths (or equivalently, the values of p) are not known before the model
reduction, there seems to be no easy 'rule-of-thumb' to pick an appropriate
value of 8 before the initiation of model reduction. A reasonable choice

for 8 seems to be

O
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However, in many situations, it seems reasonabie to take

]
(@]
~ -

vev =tinl el ()12 ds (3.3
y Atco _/~J|Q <. o«

t-+o

Note that this cost function is equivalent to assuming that u = 0 in (3.3.7),

which corresponds to the open loop operation of the system. If one knows
a priorti thatonly a Tow bandwidth controller will be subsequently used,
then (3.3.20) serves as a sufficiently good cost function for model reduc-
tion purposes. That is, 1in the case of low bandwidth controllers, the
effect of errors present in the approximate measurements 5 will not be
very serious. Hence, one may set g8 = 0 in (3.3.15). This yields
the same cost function (3.3.20).

As a corollary to theorem 3.4, we have (by setting 8 = 0 in (3.3.17))

Corollary 3.1

For the cost function defined in (3.3.20), the modal costs are given

by
v 1 2 2 2 2
Vy, = Ulpillg + w;%llmiligh HIbsl (3.3.21)
Yi 4ciui3 i'q LIRS Rl illu
i=1,2,...,N.
Remark
By defining
v, =1 2 2 2 2
V2, AL o L He: 3.22
T {”"'1”\,-1 +ug nm]y|v_1, I, 11 (3.3.223)
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the modal costs in (3.3.17) can be expressed as
Vo=V +8V. , i=1,2,...,N . (3.3.225)
i

Note that if the ordering of the modes according to the CCA algorithm

-

does not depend on g, (this happens, for example, when &z = Vy
i i

i=1,2, ..., N), then the reduced models too are independent of 8. In

*

this case we say that the modeling-problem and the control-problem are
separable. That is, when the mode]ing'and control problems are separadle,
one may design a controller based upon one reduced model for cZi bandwidth

controllers.

Theorem 3.5

The modeling-problem and the control-problem are serarzdle if the

measurements and the outputs are related by

2=Ty+v; T eRLXk (3.3.23a)
with T satisfying

TWIT = ag ' {3.3.23b)
for some positive scalar a.

Remark

If z =y and V'1 = oQ, then obviously the conditions (3.3.23a,b) hold.

This implies that if the outputs are directly measured (z = y+v) and if
the noise statistics satisfy V"1 = aQ, then the modeling-problem and the

control problem are separable.
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3.3.4 Example
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For the beam example considered in Section 2, the following expressions
hold.
T
bi =1, P; = sin (.45 ¢1) , m; = sin ( .35 71)
| Y S,

The closed Toop MCA formula (3.3.13) is not applicable, since the assumptions

(A2) and (A3) do not hold.

The expressions for open loop modal costs ay (3.3.21) and 02 (3.3.22a3)
i i
greatly simplify to yield

v, =——sin? (.45 71) (3.3.24a)

i .02 i

> 1 . 2

Vz = 7 sin (.35r1) . (3.3.24b)
i .02 i

The expression (3.3.17) correspondingly simplifies to

s 1 . 2 . .2

Vg = 7 [sin® (.45 xi) +8sin“(.35 ¢ 1)] (3.3.24¢)
i .02 1

Now, we apply the basic CCA algorithm for model reduction, using the

open loop cost function of Section 3.3.3 for different values of 8.
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STEP I {-f
a) Compute the modal costs: T
- - - -
Since both Vy and v, are independent of 8, we will first compute o
- - i i
vy_ and v, independently. These are tabulated below.
i i :
.
MODE #(i) vy, V. o
10 . o
1 4.8777 e+l 3.9699 e+l v = Z v, =4.9718 e+l B
y =21 Y;
=1 Y4 1!
2 2.9841 e-1 | 2.0454 e+0 i
3 4.9006 e-1 1.5106 e-2 ]
®
10 . 1
4 6.7480 e-2 1.7666 e-1 v, = Z V., = 4.2007 e+l

LR S oL

5 4.0000 e-2 | 4.0000 e-2 .
1

)

6 2.5250 e-2 3.8841 e-3 i\;

l;i

7 4.2921 e-3 2.0315 e-2 o

| )

8 1.1042 e-2 4.2174 e-3 T

9 1.8699 e-4 | 1.5707 e-3 - ]

— 3

10 5.0000 e-3 | 5.0000 e-3 .’

-

Y

" e

Nota that the modal costs do not decrease monotonically as i—10Q0. Hence T
one should not artibrarily delete the high frequency modes, as is tradi- .f
tionally done. 'f;
*
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Figs. 3.1a and 3.1b display the effect of 8 on modal costs and,
as a consequence, on the modal sequence. In these figures the normglized

modal casts are defined as

3 £ 0, My s 1=1,2, 00, N (3.3.25a)
i

so that
N . Sl
I og=1 (3.3.25b) RN
Fig. 3.1a  illustrates that mode-1 dominates over all the other modes, for ’ e
all values of 8. This mode has been suppressed in Fig. 3.1b  to exhibit 4
the behavior of the other modal costs as B8 changes. C(learly, the signifi- !
cance of modes 2 and 3 changes as 8 goes from 0 to 100. ) OJ
- 9
b) Rank the modes in the descending order of their modal costs, &o e
i RO
We will illustrate this only for 8 = 0 and B8+~ , as shown in the ST j
following table. ’ ) .<
8 RANKING OF MODES o
A
> e
PN
‘
0 ,3,2,4,5,6, 8,10, 7, 9} ]
‘o * {1, 2, 4,5, 7, 3, 10, 8, 6, 9} ]
» L)
e ]
)
* g+= is equivalent to omitting vV, in the o o
open loop cost function V. Y TS
°®._ o
LT - . ’ w
STEP II. Construct the reduced models of order n. = 2r, where r is the
number of modes to be retained in the reduced models. o ‘1
>
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Clearly, for 2 < r < 8, we get different reduced models, depending
on the values of 8. Table 3.1 illustrates the derendence of the
reduced models on 8.

Observe that if one can tolerate a reduced model with a cost perturba-

tion index of 63%,then a reduced model containing only one mode is sufficient.

Furthermore, this model retains the first mode for any value of 8. Hence,
for this example, for a reduced model with q =.6, the modeling-problem and
the control-problem are separable. However, for q < .05, they are not
separable since the reduced models now depend on 8, (except when r > 9).
For comparison purposes (in section 3.5), we will choose two reduced

models, both containing 3 modes; one corresponding to 8 = 0, {1,3,2,} with

a q = .00324, and the other corresponding to 8 +=, {1,2,4}, with a ¢ = .00214.

Denoting these models respectively by S] and Sz, their state-space represen-
tation are given below.
S1 S A1 X + B]u
nTbhx
z, Ml X +v

where

e{ ° . . }T
X] ﬂ]l n3. "lz. ﬂ]' ﬂ3| ﬂz

'.n_L. P




SRR S S S e it el A Al R D A i A A A i it A A R A A St 20l i Se
N -
L’;
Fr ¢, = [.9877, -.8910, .30%0, 0, 0, 0]
M1 = (.3910, -.1564, .8090, 0, 0, O]
-
b St Xy = Ayxy + Bou
- Y2 = G%e
L 23 =M%,
where
] A - L] L]
\ X2 = {ﬂ]» nzs Tl4' TI]: Y'Izs l'l4}T
b 4
0o 0 0 1 0 0] 0] o
0 0 0 0 0 0 0 T
A 0 0 0 0 0 1 5 0
2 a0 0 -.00 0 o | % | K
0 -6 0 0 -.04 0 L
|0 0 -25 0 0 -.16 4 o
® i
¢, = [.9877, .3090, -.5878, O, 0, 0] S
T
' M, =[.8910, .800, -.9511, 0, 0, O] S
; S
' o These reduced models will be compared with the cost equivalent reali- 7—.1
! zations to be generated in Section 3.4. o
3 3.4 Cost Equivalent Realization (CER) ‘
¢ 3.4.1 Definition. .
h’ . ’ R
[— Modal Cost Analysis, a special case of component cost analysis (CCA), :
4 offers a convenient model reduction algorithm for mechanical systems
. described in second order matrix form. These reduced models satisfy ] .:
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q* ;. There exists another special set of coordinates in which the
reduced models obtained by the CCA algorithm also satisfy this property.
Additionally, these reduced models yield zero cost perturbation index,
i.e., ¢ = 0. This implies, from the definition of cost perturbation
index, that these reduced models are equivalent to the original mocel
with respect to the cost function, i.e., VR = /. Hence, these are called

Cost Equivalent Realizations (CERs).

Definition 3.3 A Cost Equivalent Realization (CER) is defined ta be a

reduced model with the property
Vo * V. (3.4.1)
Note from (3.3.5), (3.3.4) and (3.2.10) that in MCA
V-v,s Z f’ >0 ,
R ieT i=

with the equality holding only if the truncated modes (icT) are either
unobservable and/or uncontrollable. Hence, in general, the reduced models
obtained by MCA do not satisfy the cost equivalence property (3.4.1).

In this Section we present a set of coordinates, called normalized
Hessenberg coordinates, in which the CCA yields reduced models which are
cost equivalent. Presenting the properties of the CERs, we conclude this
Section by 11lustrating the numerical procedure with the aid of the beam

example.

3.4.2 Normalized Hessenberg Coordinates

The generalized Hessenberg coordinates have recieved considerabie
attention in the context of model reduction, [9-13], These coordinates
are used to identify the least observable states of a given system, which

can then be deleted to yield an acceptable reduced model. However, these
167
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least observable states may be highly controllable.

But, this
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‘controllability-information' is not taken into account in either of these

references.

Hence, we enforce a normalization of these coordinatas to

include the controllability of the states also in the model reduction

decisions

Lefinition 3.4

Normalized Hessenberg coordinates are defined to be

those coordinates in which the given model (3.2.1) has the following

propertie

S.

a) x4 lim E (x(t) x'(t)} = I .

b) A

where xieR !

iJ

A

=0, Jjo>ivl,i=1,2,...,p

rank [ Ai.1+]] ol O t=1,2, ..., p-1

c) y = Cixy »

With C¥QC] » diag {G]zy 022’ ssey G

Remarks

2

81 208, 2 ... 2

(3.4.2)

(3.4.3)

(3.4.4)

1) (3.4.3) and (3.4.4) imply the following structure to (3.2.1a)

r—.
X

2

-
Al

An

A31

Ap-1.1

pl

A2

A2z

A32
Asa1,2

Aoz

0

A3

A33
A

Ap3

p-1,3
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E‘ y=Cx®[c, 0 0 ...07x (3.4.5b) o
L. -8
2) The model is naturally divided into p ‘components’ X i=1,2, ...p R
of which only the first ccmponent X, is directly observable in y. We
will call these components the 'normalized Hessenberg ccmoonents'. ;"H ®

3) The following relation holds

Ry 2Mgep s 11,2, .0 p-1. (3.4.5¢)

-
L

(proof can be found in [11]).

p—

= 0, for some i, then the components {xi+7, X540

g 4) Clearly, if Ai,i+l ;

C wees %)} are unobservable. . .{

- 5) At steady state, by definition (3.4.2), the normalized Hessenberg .
¥ coordinates (and hence the components) are uncorrelatad.

6) The algorithm to transform any given system to the normalized 3 lg

Hessenberg coordinates is included in the CER algorithm of o ;;i

Section 3.4.3. 't;f

. g

We will now present some of the properties of normalized Hessenberg

coordinates in the following theorems

|

.
L . . e ... e
e a o ma a & o & a a2 _ah ha’n'a'a's & alaa L bty S Y

Theorem 3.6

The component costs of the normalized Hessenberg coordinates are

given by

<
[ ]
~
)
e
w
—

wet.
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Remark
It follows from theorem 3.6 that the only 'component' that contributes

to the cost function is the first normalized Hessenberg component X, an]’

and that the remaining components Xss i=2,3, ...,p do not contributa to

the cost function.

Theorem 3.7
The component costs associated with the normalized Hessenberg coordi-
nates are minimally sensitive to perturbations in the state weighting

matrix CTQC in the cost function.

Remark

Consider the case when the state weighting matrix CTQC in the cost
function is subject to perturbation - this may happen, for example, when
the output matrix C is not known exactly, or when the model is used for
the subsequent modification of the output weighting matrix 2, as in
[3.7). Theorem 3.7 implies that, in this situation, the choice of the
reduced models in normalized Hessenberg coordinates is minimaily sensitive
to these perturbances, since in CCA the model reduction decisions are

based upon the ccmponent costs.

3.4.3 CzR-Algorithm and Properties.

In this Section we present an algorithm for transforming a system
to normalized Hessenberg coordinates and to extract cost equivalent
realizations by CCA. We also present the properties of CIRs thus

generated.

170
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CZR-Algorithm

STEP I. Read the system matrices (A, D, C, W} and the weighting matrix

" 0 in the cost function.

STEP II.
2a). Compute X-by solving

XAT + AX + owD' = 0

2b). Compute 8,» the square root of X;
X = exexT
2c). Compute Qy’ the orthonormal modal matrix of
exTCTQCGx such that

T J.T,5-. < 4% 2 2 2
ey -exc Qccx-gy diag {a] » Gy s oee G s 0, ..., 0}

where u.lz 3(:22 > aes laﬁf 0

STEP III.
. 4
3a). Define T1 = exey
3b). Define
. nyxn;
A, Al A, eR
1 M2 R
= T] AT] : (n-n])x(n-nl)
(A1 A2 A2z €R
o
1 - n,xm
= T g, D, <R L
| %

3c). Seti=2,p =2 and n.=n .

1N

N 3 R
aa, - B U

(3.4.7a)

(3.4.7b)

(3.4.7¢c)

(3.4.7d)

(3.4.8)

e
'



s — ™y T Ty A e T T T T Ty
L D
°
0 -
T STEP IV. -
P 4a). Obtain the Singular Value Decomposition of A%_] ; as - ‘._‘
¢ ’
- T
b
5y 0 v,
{ ' i (3.4.10a) i
: i-1,4 ~ Y i 4
’ o o |v, ®
r -
! 3
i . i i R ,
F- where o = diag o], gp'» ..., o‘n;} , oJ.’ 2 05,1>0 (3.4.100) B
é (n-n_)x n; ;
fe and V'l1 eR r 1 ¢
‘ 4b). Define
[ 10 ‘
e o
. A r A
\ T, N S AN (3.4.10¢) i
. o v
- ]
S 4
‘rc 4c). Set n. = "r+"i' If n. = n, go tostep V. .'
- &, i' i ]
4d). Define Ai,i-ﬂ = V] Ai'i V2 (3.4.11a) .‘
and A! 8y iy (3.4.11b)
{._ i+1,1+1 2 Mi 2 - e .
: 4e). Set i = i+l and p = p+l and repeat step IV.
E'. STEP V. ) 4.%
. Define T = 1 T, (3.4.12) ‘
i=1
S STEP VI. 3
R
‘ Apply the transtormatsion ’ o
X = Tx (3.4.13a) b
. to obtain the model in normalized Hessenberg coordinates, i.e., 3
) °
the model ]
172 i
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STEP VII.

x = Ax + Dw

where
77 1AT
-1

A

0=T D
C=CT

satisfies the specification (3.4.2-3.4.4).

Tl el N R0 & Y Baa e

(3.4.13b)

(3.4.13¢)

To obtain a reduced model, retaining r normalized Hessenberg

r
components, (of order n, = ) "1)' delete the last (p-r)

i=1

components'{xf. i=r+1, ..., p} frem (3.4.13), where x

is partitioned as

T.r, T ,T T, . i

x [x] » Xo s ...,xp] ; xiez .
This reduced model of order n. is given by

Xp = AR"R + va

é - CR‘R ’
where
A]y A eee 07 ’vf
T (A Az e O TREID,
L:‘ri 'irZ | Ar.'r'_j _ér_}

A
CR’[CI’ 0’ e 0] ]
If (3.4.14) 1s controllable, then it is a CER.
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Remark

This algorithm does not guarantee that the resulting reduced

model (3.4.14) is asymptotically stable. The following theorem

includes the stability properties of (3.4.14).

Theorem 3.8 (stability properties of (3.4.14))

i)

ii)

1i1)

Remarks

Re (A;(Ag)t <0, 1=1,2, ..., n

where Re (-} denotes the real part of (-) and

Ai(AR) denotes the i-th eigenvalue of Ap.

Re {xi(AR)} <0,1=1,2,...,n, if and only if the
matrix pair (AR, DR) is controllable.

1f Jz(p) =0, ¢£=1,2, ..., 1 for some i, then for

any

(3.4.14) is not asymptotically stable, where Jj(p) ¢ CAj']D
is the j-th Markov Parameter of the full order model.

1) From (i) note that none of the eigenvalues of the reduced model lie

in the open right half plane.

2) From (iii) observe that the Markov Parameters of the full order mcdel

dictate the asymptatic stability of the reduced models. For single

input single output systems the same observation can be made in the

original version of model reduction by Routh Approximaticns [13].

3) (iii) also implies that, if JL(:) =Q0,21=21,2, ..., 1, then for

(3.4.14) to be a CER, the number of components r retained in the

model,

must satisfy

174

..‘\

'''''''

T T T UG NI UL S XSS U MR VU WO A /UM SR SN SR G, SN S SO AUV VI SO L. U SO S S U

L R Sue Jiage Bas




*7‘?.1 Lna

v—r

v "Fr'rr‘rr—'T v

-v- ‘-..A - fal » y , i y . - ) " .
B TR R ot Y S SR WV A, S PP L AL WL WU AT Iy T,

i) The CERs match the steady state output covariances:

lin Efg(t)gT(t) = lim Efy(t)y (t)} (3.4.15a)
and
lim EG(t)T ()} = lin ECH(t)yT ()1 (3.4.15b)
i{i) For ;
n. = jzl LT

Jj(i) = Jj(p) » 3 =1,2, ..., (3.4.16)

where Jj(i) g CRAi']vR is the j-th Markov Parameter of the reduced

model retaining i components.

Remarks
1) Since

v l‘im TrlE((t)y T (£)}] ,

(3.4.15a) clearly implies that Vp =V (cost equivalence).

2) Consider Yss i=1,2, ..., k, the {-th component of y. The RMS

value of Y defined as
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is a fundamental input-output property of a system and i{s independent
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of any coordinate transformation. It {s, therefore, encouraging to

observe from (3.4.153) that, this fundamental procerty is preserved

Bl

: by CERs.

F 3) Since matching of Markov Parameters reflects the matching of the °

b transient response of ; and y [16] , (3.4.16) implies that, by “

E increasing the order of the reduced model, better matching between )

:@ the transient response can be achieved. .]
A nota on the coat function: J

As pointed out in Section 3.3, one may either consider the open loop

E. cost function Vy. (defined in (3.3.20)), or an augmented cost function | .:

& Vs (3.3.15), for the model reduction purposes. Either cost function :

&- can be handled equally well by the CER algorithm, by properly defining

r the 'outputs' y and the weighting matrix Q in the cost function. This .

can be achieved as follows.

]) For V’Vyt

set y = y, the actual output — - %

and ¢ = Q, the wefghting matrix in (2.3.8).

g 2) Forva=v,, o

, @ o
- set 47 = [y, 2'] ]
and 9 = diag (Q, 8V} g

'0 where ¥ {s the intensity of the measurement naise. o .‘4
1 .
L <
o .'
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3.4.4 Example
We will illustrate the application of the CER-algorithm with the aid
of the beam examplie. For illustration, consider the case 3 = 0. The A

matrix of the model in normalized coordinates is given in Table 3.2.

Note, that since the first Markov Parameter,

J1(20) =Cp=0,

we have DI = 0, in the input matrix, and consequently A](A]]) = A]1 = Q.
Hence, the reduced model retaining the first state (coordinate) is not
asymptotically stable and therefore it cannot be a CER.

Also, note that since yeR], n = 1. And, hence from (3.4.5¢c)
ng = 1, 1=1,2, ...p and thus p = 20. In other words, for this example,
the normalized Hessenberg 'components' are 'coordinates' themselves.

In order to determine the desirable order of the reduced model, we
have Table 3.3. The quantity [IARTQ/HARII measures the observability of
the truncated norma]ized'ﬂessenberg coordinates. Since none of the
entries of the fourth column of Table 3.3 is small (of the order of 0.1),
it warns us that the CER-algorithm may not yield a'good'reduced model.

For comparison purposes, we select the reduced model of order 6.

We generate two reduced models, one corresponding to 8= 0 and the other,
8 - », These are respectively denoted by S1 and 52' and their describing

matrices are given in Tables 3.4a and 3.4b.
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TABLE 3.2 REPRESENTATION OF THE BEAM MODEL IN

3_ NORMALIZED HESSENBERG CUORDINATES
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Table 3.2 Representation of the 8eam Model in

Normalized Hessenberg Coordinates

Columns 1-10 of the A Matrix

The AA-CER A Matrix (20x20)

—
—t

ond J I A R
Do~ WN

N
o

VOONAOAIWDMELWN —~

-—t
OWO~NOVDL W N —

1
-1.041E-16
-1.019€+Q1

8.254E-14
-2.566E-14
3.115E-14
-1.607€-15
2.202E-14
-1.797E-14
-1.032E-14
1.593E-14
-2.341E-14
-1.801E-14
-4.222E-15
4.945E-16
-1.609E-14
-1.603E-16
"4.693E-14
-1.129€E-15
4.353E-14
5.975E-16

7
-1.916E-14
1.032e-12
-§.973E-15
-1.843E-13
-1.595E-14
3.358E+01
-3.958E-04
3.631E+01
1.690E-03
-5.388E-02
-4.127e-04
6.136e-03
2.044E-23
1.982E-92
-1.983e-04
-1.430E-02
-9.080E-04
1.629e-02
4.658E-04
3.421€-03

»
“

L W UUN WY S

2
1.019e+01
-9.166€E-01
-9.773E+01
-3.841E-01
2.654E-02
1.230E+00
-3.810€-02
4.895E-01
8.131E-02
-2.593E+00
-1.986€-02
2.953e-01
9.834E-02
5.538E-01
-9.541E-03
-6.881E-01
-4.369€-02
7.837E-01
2.241E-02
1.646E-01

. 8
-7.614E-16
1.732E-15
-1.881E-14
-1.211E-14
9.422E-14
1.227e-14
-3.630E+Q1
-6.534E-02
-3.018E+01
6.922E-01
5.303€e-33
-7.884E-Q2
-2.625£-02
-2.546e-31
2.543€-03
1.837e-01
1.167E-02
~2.092E-01
-5.985E-03
-4.396E-~02

3
-8.059€-14
9.773e+01
-5.716E-07
1.766E+01
-2.096E-05
-9.714E-04
3.008E-05
-3.865e-04
-6.421E-05
2.047e-03
1.568E-05
-2.332E-04
-7.766E-08
-7.531E-04
7.534E-06
5.434E-04
3.450E-05
-6.189E-04
-1.770€-05
-1.300E-04

9
1.186E-14

-1.192E-12
6.905e-15
-8.628E-14
6.078E-14
-1.034E-14
8.010€E-15
3.016e+01

-1.803E-03 .

5.468E+01
8.810E-04
-1.310E-Q2
-4.262E-03
-4.230E-02
4.232E-04
3.052€-02

1.938E-03 .

-3.476e-02
-9.942E-04
-7.303E-03

179

4
2.427E-14
-2.196E-13
-1.766E+01
-4.023E-02
-2.869€E+01
2.577E-01
-7.981£-03
1.025€E-01
1.704€E-02
-5.432E-01
-4.161E-03
6.187E-02
2.060£-02
1.998E-01
-1.959€-03
-1.442E-01
-9.154€-03
1.642£-01
4.696E-03
3.449E-02

10
1.755E-15
-1.278E-14
6.582E-15
3.581&-15
-6.037E-14
-8.506E-15
-8.522E-14
-6.236E-14
-5.486E+01
-1.833EX00
4.503g+01

. 4,176e-01

1.391E-01
1.349E+00
-1.349€-02
-9.732£-01
-6.179E-02
1.108E+00
3.170E-02
2.328e-01

5
-3.502E-14
1.148€-12
1.849E-14
2.870e+01
-1.921E-04
-4.442E+01
5.515e-04
-7.086E-03
-1.177e-03
3.753e-02
2.875E-04
-4.275E-03
-1.424E-03
-1.381E-02
1.381E-04
9.962E-03
6.326e-04
-1.135E-02
-3.245e-04
-2.384£-03

6
1.169E-16
-9.8%4E-14
6.903E-14
-3.178E-14
4.440E+01
-4.128E-01
-3.355E+01
-3.284E-01
-5.457E-02
1.740E+00
1.333E-02
-1.982€E-01
-6.599€-02
-6.400E-01
6.403E-03
4.618E-0°
2.9328-02
-5.259€E-01
-1.804€-02
-1.105e-01

' [ 3 . .
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N
2.105e-14
-1.224E-12
9.925E-15
1.772E-14
6.245E-14
-5.806E-14
1.513E-14
8.875E-14
-1.242E-13
-4.668E+01
-1.076E-04
-3.638E+01
1.065E-03
1.033E-02
~-1.034E-04
-7.455E-03
-4.734E-04
8.491€E-03
2.428E-04
1.784E-03

17
-4.692E-14
1.265E-12
4.026E-14
1.053E-13
-8.858E-14
-1.097E-13
-9.056E-15
3.076E-13
1.208E-13
-3.504E-13
1.806E-15
3.507E-14
3.570€-14
-9.134E-14
1.734E-14
-2.302E-C0
-5.207E-04
1.380E-Q1
5.3428-04
3.924E-03

M Sl S S A N AV R

Columns 10-20 of the A Matrix

12
-2.603E-15
6.063E-14
-1.001eE-14
4.215E-15
3.744E-14
-5.397E-16
2.304E-14
3.428E-14
-2.023E-13
-1.239E-13
3.638E+01
-2.378E-02
3.136E+01
-1.536E-01
1.537e-03
1.108E-01
7.038E-03
-1.262E-01
-3.611E-03
-2.652E-02

18
-1.568E-15
1.631E-14
-5.907E-15
-1.363E-16
-9.849E-15
1.545€-15
1.504E-14
7.694E-15
2.708E-15
1.665E-14
4.107E-15
2.459E-13
-.1686E-14
-2.507E-14
3.077E-14
1.898E-15
-1.078E-01
-1.675e2-31
1.090E-01
-7.039€-02

Table 3.2 (cont'd)

13
2.729€-15
3.979E-13
-2.995E-14
-4.354E-14

1.601E-13
-8.749E-15
-6.048e-14

1.644E-13
-1.093E-14
-3.509€-13
-8.698E-15
-3.138E+01
-2.638E-03
-2.632EH01

5.118E-04

3.691E-02

2.344E-03
-4.204€-02
-1.202E-03
-8.832E-03

19
-4.167E-14
9.986E-13
3.341E-14
2.972E-14
-9.141E-14
-2.396E-13
-1.138E-13

-2.680E-14"

-1.204E-13
-3.470E-13
6.375E-14
3.256E-14
-6.993E-14
-9.050E-14
-2.50CE-14
1.416E-14
1.099€E-15
-1.091e+01
-1.370E-04
5.826E+00

180

-2.
.580E-14
-9.
-3.
-4.
-4,
L441E-16
.462E-16
.028E-14
.338E-13
-4.
-3.
.160E-14
.273E-14
.401E-14
.511E-16
.4252-14
_553E-15
-5.
-7.

-7
-1

-1
-1

14

.749€-15
.728E-14
.532E-14
.952£-15
.237E-14
.713E-15
.795e-04
.511E-14
.185E-14
.144E-13
.988€-14
.253E-14
.627E+01
.481E-01
.433E+01
.580E-01
.273E-02
.077e-01
.166E-02
.566E-02

20
129E-15

462E-15
744E-16
219e-14
629E-15

483E-14
790E-14

322E+00
394E-03

15
1.299e-14
-5.115€-13
2.837E-14
-3.165e-14
-1.425e-13
1.818E-13
-1.996E-13
-3.347E-15
1.594€E-13
3.217E-13
4.832E-14
3.534E-14
-1.908E-14
~2.432E+01
-2.433E-05
-1.380E+01
-2.274E-04
4.079€-03
1.167e-04
8.563E-04

16
-6.390€-15
8.934€-15
2.061E-18
7.745E-15
1.071e-14
1.206E-15
1.280E-13
-.2322E-15
-2.225E-14
-1.668E-13
8.995E-14
-2.187E-14
2.210E-13
6.678E-15
1.380E+01
-1.292E-01
2.286E+00
2.942E-01
8.414E-03
6.18CE-02




ey

The DD-CER Vector {(20x1)
1
1 0.
2 -1.354E+00
3 1.069E-03
4 -2.837E-01
5 1.960E-02
6 9.086E-01
7 =2.814E-02
8 3.615E-01
9 6.006E-02
10 =-1.915E+00
11  <-1,467E-02
12 2.181E£-01
13 7.263E-02
14 7.044E-01
15  -7.047E-03
16 -5,082E-01
17  -=3.227E-02
18 5.788E-01
19 1.655E-02
20 1.216E-01
The CC-Cer Vector (1x20)
1 .2
-7.081E+00 6,.226E-18
7 8
5.397E-15 7.958t-17
17 18
1.155E-14 1.022E-16
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Table 3.2 (cont'd)

The D and C Matrices

3
-3.485E-15

9
-5.537E~15

19
1.000E-14

181

4
-1.446E-16

10
-1.633E-16

20
2.587E-16

S
7.010E-15

n
-4.310E-15

6
6.260E-19

12
1.608E-16
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TABLE 3.3
& 4
I 4
. 4 L .
% SN I PN (N VRN N VW Y P )
- b
3 :
( e
1
2 10.2 97.73 9.5785
» 4 1.803 28.70 15.9236 i
?' } o
6 1.521 33.58 22.0751 ;
-
b -9
; 8 1.362 30.16 83.3323 -
t 10 1.323 46.68 35.3357 Ve
3 12 1.264 31.38 24.8139
3 14 1.193 24.32 20.3666
t‘ : )
i 16 1.028 23.02 22.3714 3
. 18 1.021 10.91 10.6838 1
Lc ’ ﬂOJ
i ]
B
{
' + A ’ » o
: 14!l = m;n Ay (A1) 1
| g
A . ,
: P llagrll # max 0 (Wheagr)s :
K 1 > e
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1
-1.041 e-16

-1.019 e+l
9.254 e-14
-2.665 e-14
3.115 e-14
-1.607 e-15

1 -7.381 e+00 6.225 e-18

-

TABLE 3.4a

REJUCED MODEL, S

1

THE PLANT MATRIX, Ap (6 by 6)

2
1.019 e+01

-9.168 e-01
-9.773 e+01
-3.841 e-01
2.654 e-Q2
1.230 e+00

3
-8.059 e~-14

8.773 e+01
-5.718 e-07
1.766 e+01
-2.096 e-05
-9.714 e-04

4
2.487 e-14

-2.196 e-13
-1.766 e+01
-4.023 e-02
-2.869 e+01
2.577 e-01

5
-3.502 e-14

1.149 e-12
1.849 e-14
2.870 e+0]
-1.921 e-04
-4.442 e+01

THE INPUT MATRIX, Dp (6 by 1)

1 0.

1

-1.354 e+00
1.069 e-03

] . 950 8‘02
9.086 e-01

2
3
4 -2.837 e-01
5
6

THE QUTPUT MATRIX, Cp (1 by 6)

1

2

3
-3.485 e-15

4

S

-1.446 e-16 7.010 e-1%

183

1.169
-9.554
6.903
-3.178
4.440
-4.128

6
6.25Q e-19
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TABLE 3.4b o
' - -8
REDUCED MODEL, S,
THE PLANT MATRIX, Ap (6 by 6) »
q
1 2 3 4 5 6
1 2.082 e-17 -1.109 e+01 . 1.856 e-14 -2.300 e-14 -1.056 e-14 -6.632 e-17
2 1.109 e+01 -8.803 e-01 9.748 e+01 -6.445 e-14 -2.694 e-13  9.011 e-14 " e
3 -1.966 e-14 -9.748 e+01 -1.774 e-06 -1.851 e+01 -1.157 e-13 -8.282 e-14
4 -3.572 e-14 -6.976 e-01 1.851 e+01 -1.382 e-01 -2.754 e+01 -4.179 e-14
5 1.493 e-14 -1.997 e-02 2.835 e-05 2.753 e+01 -1.133 e-04 4.288 e+0l o
6 2.711 e-15 -1.058 e+00 1.502 e-03 -4.191 e-01 -4.289 e+01 -3.177 e-0l
THE INPUT MATRIX, Dp (6 by 1) - "
1
1 0.
) e
2 -1.327 e+00
3 1.884 e-03
! 4 -5.258 e-01 B
' ’ L
1 5  -1.505 e-02
6 -7.972 e-01
t » L
b
{ THE OUTPUT MATRIX, Cp (1 by 6)
[ 1 2 3 4 5 6 .
« 1 -6.519 e+00 4.257 e-17 -5.902 e-15 1.750 e-17 -4.935 e~15 -1.337 e-16 >
184
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3.5 Comparison and Discussions

3.5.1 Spectral Analysis.

Fundamental to every model is its modal properties, the eigen-
values and eigenvectars. In this section, we compare the eigenvalues of
the reduced model obtained by MCA and CER-algorithms.

Since, in MCA, a subset of the original modes are retained in the
reduced model, the eigenvalues of the reduced models are also a subset of
the eigenvalues of the original full order model. This information is
provided in Table 3.5, where n. = 20 denotes the full order model. CQObserve
that for n? = 2,20, both Sl(s=0) and 32(3"') retain the same modes, and
hence as mentioned previously, the modeling-problem and the control-problem
are separable in this case, (for n. = 2,20).

For cost-equivalent realizations obtained by the CER-algorithm, it
is not necessary that the eigenvalues of the CERs be a subset of the

original eigenvalues. Depénding upon the order of the CER, some or none

of their eigenvalues may be contained in the set of the original eigenvalues.

Nevertheless, by theorem 3.8, none of these eigenvalues lie in the open
right half (unstable) complex plane. In Fig. 3.2a and Fig. 3.2b, the
modal frequencies (w) and their damping factors are plotted for the cost
equivalent realizations of orders n,. = 20, 18, ..., 2. Figs. 3.2a and 3.2b
correspond respectively to 8 = 0 and 3+w=. Also provided in these figures
are the corresponding modal cost sequence of the modes (of the full order
model) - this is indicated by the numbers wizhin parenthes{s in the first
column,

Observe that the changes in the damping ratio occur mostly at the
low frequency range, and gradually extend to high frequency range as

the order of the CER reduces. Furthermore, for both the cases 8 = 0 and
185




TABLE 3.5. EIGENVALUES OF THE REDUCED MODELS - MCA

FREQUENCY, (RAD. sec™ )T
n. S;(8 = 0) Sy(3+=)
20 'l,9,4,16.25,36,64.100,49,81+ 1,4,16,25,49,9,1900,64,36,81 - _
18 1,9,4,16,25,36,64,100,49 1,4,16,25,49,9,100,64,36 L .i'
)
1
16 1,9,4,16,25,36,64,100 1,4,16,25,49,9,100,64 1
14 1,9,4,16,25,36,64 1,4,16,25,49,9,100 o ;',;
12 1,9,4,16,25,36,64 . 1,4,16,25,49,9 !
10 1,9,4,16,25 1,4,16,25,49
8 | 1.9.4,16 1,8,16,25 . RS
]
6 | 1,9.4 1.4,16 Y
4 11,9 1.4 =
2 |1 1 L
T All these modes have the same damping factor of .005 » ‘ o
t The frequencies are ordered in the decreasing magnitudes of their o
modal costs. R
N
186 ]
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8 - =, the CZRS tend to retain the high frequencies, which is also a tendency
observed in Routh Approximation methods [3.8].

Hence, in this example, the CERs tend to retain the high frequency
spectrum, whereas the reduced models obtained by MCA retain the low frequency
spectrum. The effect of this difference clearly shows up in the time response

analysis of the reduced models in the following section.

3.5.2 Timg Response.

This section compares the time response of the reduced models of order
6 (generated in sections 3.3 and 3.4) with that of the full model contain-
ing 10 modes. The input signals used are an impulse with unit strength,
and a step with unit magnitude. Figs. 3.32, b and Figs 3.4a, b display
the results.

The 'system differences’ plotted in these figures (i) ((ii)) are the
differences between the output (measurement) generated by the reduced
models and the full order model. Figs. (a) correspond to impulse response
and Figs. (b) correspond to step response.

Observe, from Figs. 3.3a and 3.3b, that the system differences have
high frequency oscillations. This {s due to the fact that the MCA-models ten-
ded to retain the lower frequencies, and hence the error (difference) is predomi-
nantly due to high frequency modes. Also note that the model 81, which corres-
ponds to 8 = O, generates the output more accurately than sz. This is to
be expected since s] was generated with emphasis on the output (g8 = 0).
This obsarvation is reversed in the case of measurement errors, which is
again expectad.

The same trend is observed in Figs. 3.3b (i) and (ii). These reducad
models, do not retain the d.c. gain of the full model, except model S.l in
Fig. 3.3b (1).
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The time response errors of the CERs to impulse and step inputs are
plotted in Figs. 3.4a and 3.4b. The ascillations in these figures are of
lower frequencies (than those in Figs. 3.3) since the CERs had eigenvalues
with higher frequencies. Both the output error plot (Figs. 3.4a (i)
and Fig. 3.4b(i) and the measurement error plot (Figs. 3.4a (ii) and j"j_i
Fig. 3.4b (ii)) exhibit identical behavior. None of these models retain
the d.c. gain of the full model.

In comparison, based upon the time responses, the reduced models of -

order 6§ produced by MCA, seem to be superior to the CERs of order 6.

.[:_ _

3.6 Conclusion ]
L |
E . This Section has presented and analyzed two model reduction schemes: R
o (1) Modal Cost Analysis, and
T
2

(2) Cost Equivalent Realizations.

Both these schemes are shown to yield reduced models whose cost perturbation
indices can be predicted exactly, i.e. q = &. In addition CERs have

(in fact they are defined by) the property ¢ = 0. However, for mecha-
nical systems, for which modal data is available, MCA is much simpler

to implement than the CER-algorithm.

Both these schemes are special cases of Component Cost Analysis, which

@

o generates reduced models based upon a quadratic cost function. The role of
;':f this cost function has been studied and different cost functions have
e been presented in this section.

o

. The simply supported beam of Section 2 has been used as a numerical
.i;ff axampie %o compare the above two model reduction schemes, and also to
;'_4 study the effect of different cost functions on the reduced models. For
;fi. this example, it turns out that the reduced models by MCA are superior
s 193
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to the CERs. It has also been observed that the CERs tend to contain high
frequencies, while the reduced models produced by MCA retain low frequencies.

As a result, it is shown by simulation, that the trajectory errors associatasd

with CERs are smoother than the errors associated with the MCA-reduced models.

However, the magnitude of the errors is larger for CERs.
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4.0 DESIGN AND EVALUATION OF CONTROLLERS S
4.1 Introduction - !
As mentioned in the beginning of this report, the purpose of the :
reduced models obtained in the previocus section is to design a2 low-order e

controller based upon the approximate models. The situation at hand can N

be explained with the following diagram.

. SRR FURRA A YN

W ———————] ey
S(n)
u ™ ——m2 ~
MODEL )
REDUCT ION B
2 . .
w ‘ y L
S(nr) . —"lz ]
l : I S
' CONTROLLER l ®
! DESIGN | ,
| Y ! 3
L - - ]
u ®
- Sc("r) 'f ‘
| e
]
° S
- )
b -y
: ]
[ Fig. 4.1. Representation of Controller Design ]
¢ Based Upon Reduced Models .
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The process {llustrated in Fig. 4.1 consists of two steps:
(1) Model reduction (this was the subject of Section 3), and (2) con-
troller design (subject of the current section). In Step (1), the
given model of order n is reduced to an approximate model of order n.<n.
The output and the measurement signals (which are now only approximate)
are indicated respectively by ; and z. Step (2), now assumes that this
reduced mocdel 1is exact and designs a controller to minimize the follow-

ing cost function.

Ve m %E lt {912 + o) ule) I o (4.1.1)
° Q- R

In other words, step (2) assumes that ; and 2 are exact and not approxi-
mations. (This is indicated by the dashed lines in Fig. 4.1.) But in
reality, the controller sc("r) receives the signals z and not z, and
drives the actual 'model' S(n) and not S("r)‘ (as indicated by the solid
line). Furthermore, the cost function (performance objective) one is

interested in is

t
ve il 3EL Iy 12+ ollute)l ?e (4.1.2)

Lo

and not (4.1.1). Naturally then, the errors in ; and ; dictate the
actual performance of the controller. )
The purpose of this section is to present this design and evaluation

procedure and to {1lustrate the effect of errors in the reduced model on

the performance of the controller., We will use the four models generated

in the previous section as the reduced models.
In Section 4.2, we present the standard controller design techniques

by Linear Quadratic Gaussian Theory, and present the evaluation procedure

in Sectfon 4.3. Section 4.4 applies these techniques to the beam example.
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4.2 LQG-Controller Design

The Linear Quadratic Gaussian (LQG) approach [8] to control sys-

tem design for stochastic models has gained increasing accentance as a -

practical design tool. Some of the reasons for the wide acceptance of

LQG appmach are due to easily derived analytical results, mathematical 4

tractability and some guaranteed robustness properties in terms of gain .4

and phase margins.

Since this is a standard text book theory (Ref. (8] , for example), | j

we only sﬁmmarize the steps needed for controller design, for complete- .

ness. ‘

We assume that a stabilizable and detectable’ model is available j

in the following state spéce form. K .1

)’(R = ARxR + BRu + DRw |

| y = Cxp (4.2.1) .

z = Mxo v ]

with the vectors x; ¢ Rnr. ueR. werR, ye %, and z,v ¢ . The 4

process noise w and the meaﬁunement noise v are assumed to be uncorrela- | J
ted zero-mean gaussian white noise processes, with intensities W and V

respectively. (If needed, we can assume random {nitial conditions for

the states Xa but, for the infinite-time design problem considered herein, *.J

this becomes unnecessary). We wish to design a controller of order L :

which minimizes the cost function

pe 1 L TSN+ ollue) R & (4.2.2) %

*both the uncontrollable subspace and the unobservable subspace are ]

asymptotically stable.
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For this problem, the LQG-theory yields the following optimal controller,

- n
X, * Acxc + Fz ; Xe € R" (4.2.3a)
u = ch
where
4 -
Ac (AR + BRG FMR) (4.2.3b)
mxn n_x¢&

and where the control gain G ¢ R T and the filter gains Fe R "

are given by

. 1pgl
6=« 5 BRF (4.2.4a3)

F= PM{V" (4.2.4b)

with K satisfying the control Riccati equation

Te - Yop p=1oTe o cThe o
KAg + Agk = “KBLR™'BoK + € 0C; = O (4.2.4c)

and P satisfying the filter Riccati equation

T T, -1 T
PAG + AP = PMIV™'MP + DWDp = 0 (4.2.4d)

Thus, to obtain the optimal controller, the following steps are needed.
Algoritfm for LQG controllar dasign.

Steo 1. Compute K and P by solving the Riccati equations (4.2.4c)
and (4.2.4d).

Sten 2. Compute ﬁhe controller parameters according to (4.2.3b), (4.2.4a)

and (4.2.4b).
The controller (4.2.3), obtained by the LQG-theory minimizes the

cost function (4.2.2) which {s only an approximation of the actual cost
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function (4.1.2). The following section describes the evaluation of _T_i"jr_.,'-
this controller with respect to (4.1.2) and the full model S(n). .___'.
4.3 Evaluation
Note that in (4.2.3a) we have indicated that the controller is :l;j
driven by ; which is what the LQG-theory assumes. However, when the ' ‘
controller is used to drive the full order model, the following repre-
sentations result.
- ’ -'1
n ) e
. - . r . oy
X. Acxc +Fz Xe € R (4.3.7) S
u = 6x, ' j
) e
X=Ax+Bu+Dv ; xeR s
y = Cx . (4.3.2) B
. ~.
]

For the evaluation purposes, we wish now to compute the following quan-

tities, which are defined as shown.

[ : 7
i t
Regulation Cost, V(y) 4 l_:f %-E] Il y(a) 240 (4.3.3)
) 0 Q
r ¢ .
A
Control Energy, (u) = [\ L& [ flu(o)|P a0 (4.3.4)
) 5 o -
RMS value of the i-th output (i =1, 2, .., k)
t 172
A
W/Z(yi) - [ljf %E fo y? (o) da] (4.3.9)
RMS value of the input energy at the f-th actuator (i = 1,2,..., m)
172, v 8 [1m 1. %2 /2
v (ui) = [t-'- ?E [o uj (o) dc] (4.3.6)
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The first two quantities, regulation cost and the control energy,
offer a macroscopic evaluation of the closed loop system. The RMS

values V]/z(yi) and VU2

(ui), however, are of more importance, since in
general, the mission requirements are given only in terms of the RMS
values of the outputs and the RMS values of the maximum allowable con-
trol energy at each input channel. Moreover, violation of any of these
specifications does not always reflect in V(y) and/or V(u).

We now present expressions for the computation of these quantities,

based upon the following 'augmented' representation of the closed loop
system.

X, = Aaxa + Dawa (4.3.7a)
Ya = C3%,
where
A . n+n
x: = [xT, ch] i X, eR r
wI : [wT, vT] L A el (4.3.7b)
k+m
y:=[.vT. W'l s Y, € R
A r .
Aa = A BG
L
. p- -
Da = 0 0
(4.3.7¢)
Q F
A £ s
Ca = c 0
0 G o
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. Theorem 4.1
The quantities (4.3.3 - 4.3.6) are calculated as follows. N .
T
o
v(y) = TricTack ] (4.3.8a) o
V(u) = Tr(6T6%,,] (4.3.8b) 0
}_: U”z(y,-) = [c;!' x”ci]VZ; 1=1,2, ..., k (4.3.8¢) L .1
’ 172, v _ T 12, . _ SR
- VI uy) = gy %5917 1= 1,2, oy m (4.3.8d) o
( where N )
T A
c; = i-th row of C (4.3.9a)
T8 h
. g; = 1-th row of G (4.3.9b)
] v
and where
3 X = ““‘ E (x(t) x'(t)} (4.3.10a)
{
11m
X0 ® € {x (t) x (t)} (4.3.10b) _
are obtained from partitioning
g X, = 1M ege (0)xT(e)) (4.3.10¢) S
as x, =[5, X, (4.3.10d)
6 F AN
e T -
12 %22 | R
. which satisfies,
-. XAT+AX +D'JDT=0 (4.3.10e) __-
aa a‘a aaa et -
: where
: A
o W, = diag (W, VI . (4.3.10f)
g 201 -
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For the evaluation and comparison purposes, one follows these

stens.

Step 1: Select a value of p and design an optimal LQG-controller of

order N =N the order of the reduced model (i.e. use the

algorithm for LQG-controller design, for a specific value of

0 —T'"r’*l—rv" pp—
RARAE
. o

e).
Step 2: Evaluate the quantities V(y), V(u), Vllz(yi) and V]/Z(ui),

according to Theorem 4.1. ]
Step 3: Repeat Step 1 and Step 2 for different values of o, until .
sufficient data is collected. e 'ﬂ
)
Step 4: DOraw the 'performance-plot', as shown in Fig. 4.2. ' n
Fig. 4.2 Performance Plot Lii?
» ..
p=0 ftk
) ,
s =
L -
».~ 8
< (]
=
» ot
. (=t
- = n.=n
L =) c
| o 6~0 R
! ® .!m
P RN
. CONTROL ENERGY V(u) v:?
3 > o
| -
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Note that when n.=n.=n (i.e., when sc("c = n) is designed based upon
S(n)), the LQG theory promises that the performance curve will asympto-
tically decrease (dotted line). However, for n. <N, the effect of model
errors (due to ;(t) # y(t) and E(t) # z(t)) deteriorates the performance
with increasing control effort, and eventually drives the closed loop
system to instability. Moreover, since the effect of model errors on
the performance increases with increasing control energy, the difference

between these performance curves (for n_ = n and n, < n) also increases,

c

as shown in Fig. 4.2.

Such performance plots can be generated to compare different reduced

] models (and/or different model reduction schemes) in the closed loop
situation, as is done in the following sections where the reduced models

generated in Section 3 are used for numerical simulation.

4.4 Example
The following four reduced models of the simply supported beam are
compared.
1. S1-MCA: The reduced model generated by MCA, for 8 = 0, of
order n. = 6.

2. S2-MCA: The reduced model generated by MCA, for g-e, of order

n. = 6.
3. S1-CER: Cost-Equivalent Realizations of order n, = 6, for 8 = 0.
4., S2-CER: CER of order .= 6, for 8=,

The order of the controllers designed from all these reduced models is

n.*® 6, and the evaluation model S(n), used for the evaluation purposes

i{s the full 10-mode model with n = 20,

AL )
R
.

203




Since the example considered is a single input single output system

(k =1, m=1), the RMS values of the inputs and outputs are given by :___C
V(yy) = V(y) (4.4.1a) i
and ) 5
v(u]) = Y(u) (4.4.1b) e

Hence, only the plot of V(y) vs. V(u) is presented in Figs. 4.3a and 4.3b.
Also compared in the plots are the following models.
§. FULL QRDER: The full order evaluation model, 1.e. n.=ns= 20.
6. S1-MCA; n 22: MCA-reduced model of order 2, for 8 = 0.

7. S1-CER; n =2: CER of order 2, for 8 = 0.

. . ." ..’-'
o

The curve corresponding to the full order model serves as a reference, '

L OL

since by LQG-theory, there exists no other controller (of any order) that

can perform better than the LQG-optimal controller of order 20.

A i

Observe from Fig. 4.3 that for low control energy, neither the choice ) o
of the reduced models nor the schemes of model reduction, influence the a
performance of the controllers. This is expected since in low bandwidth
controllers the effect of model errors {is attenuated by the low control ! . Q
gains. However, for high bandwidth controllers, the choice of the reducad
model does play a significant role.

0f the four reduced models, S1-MCA, S2-MCA, S1-CER and S2-CER, all

of order 6, the controllers designed based upon S2-CER yield the worst
result, driving the closed loop system unstable for a control energy lar-
ger than 1.0€-03 units. For the comparison of the remaining three models,
a magnification of Fig. 4.3ais presented in Fig. 4.3b. An obvious con-
clusion from Fig. 4.3 s that for the design of controllers of order 6,
the reduced models generated by MCA are preferable.
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would yield better designs at high control energy levels.

gain, since the spectrum is essentially the open-loop spectrum.

Table 4.1 Spectrum of the Full Order F{]ter

AR A A R e S e Sie o 2ivie —Die Jute =0 SRR N U i YRl Sl Sl

Furthermore, the models generated by both MCA and CER-algorithm
carresponding to 8 = 0, consistantly yield better controller designs,
than those for g+=, contrary' to the expectation that the 'a~=' models
This contra-
diction may be attributed to the fact that the filter gains (the mea-
surement gains in the controller) are small, thereby attenuating the
errors in the measurement signals generated by the reduced model. The

spectrum of the filter, given in Table 4.1, reflects this 'small' filter

Spectral Decomposition of Filter

Real Part Imaginary Part Frequency Damping Time Const.
(Hertz) Ratio (Sec/Rad)
-4,00233E-01 1.11204E+00 1.88101E-01 .33864260 2.49854E+C0
-2.03656E-01 3.98795E+00 6.35528E-01 .05100151  4.91023E+Q0
-1.43274E-01 1.60017E+01 2.54686E+00 .00895327 6.97965E+Q0
-1.43620€-01 2.49988E+01 3.97876E+00 .00574496 6.96283E+00
X -5.19468€-02 9.00149€+00 1.43266E+00 .00577081  1.92505E+01
? ’ -1.81831E-01 3.59999E+01 §.72964E+00 .00505081 6.49961E+C0
%i« =2.54960E-01 4.89996E+01 7.79863E+00 .00520328 6.92219E+00
F =3.22104E-01 6.39990E+01 1.01859€+01 .00503290 6.10453E+00
- -4.05784E-01 8.00991E+01  1.28916E+01  .00500968  2.46436E+C0
f;: -5.02495E-01 9.99988E+01 1.59155E+01 .00502495 1.99007E+Q0
i ' To study the effect of the order of the controller, the curves car-
i responding to S1-MCA (n. = 6) and S1-MCA (n_ = 2) can be compared.
[ ]
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Oue to the smaller order of S1-MCA (nc = 2), the effect of errors on the
controllers is more pronounced. This can be observed from the fact that
the controllers designed based upon S1-MCA (nc = §) remain stable over
a wider range of bandwidth.

However, the controllers (based upon S1-CER, n.* 2) remafned stable
for all values of bandwidth attempted in this simulation. This is due to
the fact that, for this beam example, the dimensions of the 'most' obser-

vable and 'most' controllable subspace is only 2. Now, since in CER-

algorithm, the controllability is normalized by making X = I, (3.4.2 ),
the dimension of the above subspace 1% indicated by that n, for which —
the ratio || Aorll 71l Agll in Table (3.3) 1s the smallest. Note, from .ﬂ
this table that the entry || Ag;ll /Il ARl 1s the smallest for n_ = 2.

aa 4

Thus the CER of order 2 deletes the 'nearly’ unobservable and uncontrol-

lable subspace, thereby reducing the model errors. Hence, the control-

lers designed based upon this model remains stable for a wider range of
bandwidth. issﬂ
In conclusion, then, {f the specifications on the RMS values i:-zj
L8

v/ 2(y]) <3, and T ?

V¥u) <18 X "t:fi

is acceptable, then one would pick the controller corresponding to the !——i .<
minimm point of the curve S1-CER, n. » 2, at which point, V(y) = 8.6962 e
and V(u) = 108.13. This controller not only meets the specifications
but also is more robust and requires less hardware, since the order of ’ E 01
the controiler is only two. .
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4.5 Conclusion

This section has presented the controller design technique based

upon reduced models and has also offered physically motivated metrics ,

and expressions for calculating them, for the evaluation of the control-

lers.

The comparison of different controllers has been presented with

the following points in mind.

1) The influence of model-reduction scheme,

2)
3)

Effect of order of the model, and

The role of cost function for the model reduction process.

The conclusions based upon the beam example are:

1

2)

At low bandwidth of the controllers, the influence of model
reduction schemes is not significant. But athighbandwith, the
performance of the controllers depend, remarkably, on the model
reduction scheme adopted. For the sixth order controlier, of
the riczx and- CER-algorithm used for model reduction, MCA is more
reliable.

The effect of the order of the reduced model is significant
only at high bandwidth. In general, in the case of MCA, the
smaller the order of the model, the worse {s the performance

of the controller which is designed based upon this model.
However, in the case of CER this observation does not seem to
hold, as is evidencead by S1-CER, n.* 2 curve. The metric that
dictates the performance of the controller seems to be the term
lAggll/1l Agll of Table 3.3 , which reflects the observability
and controllability of the subspace that is deleted from the
full order model.
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3) We expected the 'g-+=' models to yield better high bandwidth .J
controllars. But none of the 'R =+ «' controllers !
performed better than the '8 = 0' controllers. We conjecture

that this could be due to the low filter gains.
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5. APPLICATION: SOQLAR OPTICAL TELESCOPE

5.1 Qescription

The Solar Optical Telescope (SOT) considered is schematically repre-
sented by Fig. 5.1. The SOT is modeled by finite element methods as

follows.

o

. 2 on T
ng * 2550:n; fu ne = b (utw) (5.1.1)

1‘ = ], 2. socey 44’

where w; is the natural frequency and g5 is the damping factor of mode i,
(n]» ny and n3 represent the rigid body modes; wy S wpy T owg = 0). There
are eight 'noisy' force actuators whose control forces Ups cees ug act
in the z-direction, located as shown in Fig. 5.1. The actuator noise
(assumed to be white) is denoted by w and has intensity W = 10'4 18 Newz.
The frequencies wy are given in Table 5.1, and the damping ratios are
taken as &; = 001, 1 =4,5, ..., 44, and Z; = 0,i=1, 2, 3, corres-
ponding to the rigid body modes.

The variables to be controlled are LOS(x), LOS(y) and defocus, where
LOS(x) (LOS(y)) is the angular displacement error of the optical line of
sight in x- (y-) direction, and defocus is caused by changes in the
length of the optical axis (deflections in the z-direction). These
variables are related to the modes n; by

44

y= 121 ciny (5.1.2)

where yT = {LOS(x), LOS(y), defocus}. The control objective is then
written as

1.t 2 2
V-HmEE[{Mth*ﬂhhmﬂdc (5.1.3)
0

tre
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TABLE 5.1 MODAL FREQUENCIES e
Mode # Freq(Hz) . ]
» 1 0
K 2 0
- 3 0
- 4 .9136e+0
- 5 .165de+1
A 6 .1993e+1
- 7 .2092e+1
J 8 .2783e+1
. 9 .3630e+]
{ 10 .3652e+1
[ 1 .7688e+1
12 .817%e+1
i , 13 .8466e+]
. 14 .1087e+2
- 15 .1142e+2
[ 16 .1143e+2
S 17 .1485e+2
: 18 .1878e+2
19 .1995e+2
20 .2128e+2
{ 21 "3243e+2
. 22 .3305e+2
‘ 23 .4948e+2
- 24 .5101e+2
25 .5250e+2
- , 26 ‘ .5386e+2
b!! 27 .5520e+2
& 28 .5532e+2
29 .7225¢e+2
30 .7997e+2
31 .8498e+2
: 32 .8618e+2
° 33 .8898e+2
- 34 .9836e+2
& 35 -1010e+3
S 36 .103%+3
o 37 .1052e+3
- 38 .1078e+3
o 39 -1120e+3
40 .1198e+3
4 .1494e+3
42 .1534e+3
43 .1628e+3
44 .1657e+3
o 213
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where the output weighting matrix Q is chosen as Q = diag (1, 10, 10'3}
to indicate that the LOS-errors about the y-axis are most critical to ;'::x‘
the experiments, and the control weighting matrix R is chosen as R = 18’
to reflect that all the actuators are equally weighted.

The available measurements for the control law implementation are
Z=y+y, ZeR3 (5.1.4)

where the disturbance v 1s assumed to be a zero mean Gaussian white noise

process with {ntensity

-13 -13 15

V = diag {1077, 10°°°, 10" ") ,

to reflect the uncertainties in the measurements.

The modal data bi’ c.,1=1,2, ..., 44 is provided in Table 5.2.*

. '..A.L N
4

1 _
To summarize, the SOT is modeled in its modal coordinates as follows.

;i + 2;1 wg f.li "'miz n; * biT (utw) 5 1 =1, ..., 44

44
y= fil ¢y ng (5.1.5)

1
|
'r}

2=y+y

with the performance objective given by (5.1.3).

|
»

RS 'A.h't .’-L'LL‘A. NORTEAAS ! " _ir .

Now, in state-space formulation, the order of the model (5.1.5) is
88. The LQG-optimal controller for this problem would also be of order
88, which is too large for practical purposes. Hence, the design of
a feasible (of acceptable dimension) controller requires a reduced order -
controller design technique. We will adopt the MCA and CER-theory for

such controller design {n this Section. ]

-

*Table 5.2 is available from the author.
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5.2 Reduced Models

5.2.1 Modal Cost Analysis.
We use the following open loop cost function for obtaining reduced

models of the SOT.
vo = Qy + svz

where Vy and V, are defined in (3.3.16a) and (3.3.16b) respectively. Two
reduced models are generated, one for 8 = O and the other for g8 +«=. The
results are presented in Fig. 5.2a and Fig. 5.2b.

Since both the first two rigid body modes (ny, ny) are observable
and controllable, and have zero frequencies (u] =wy = 0), by the modal

cost formula they have infinite costs. Hence, by modal cost rule these

are the most sfgnificant modes and are thus retained in the reduced models.

On the other hand the third rigid body mode (n3; rotation about z-axis) is
not observable, and, hence Qgs zero modal cost. Therefore n3 will not
be retained in the reduced models.” Due to the infinite costs associated
with n and nys these modes are omitted in Fig. 5.2.

Observe that {if the order n. of the desired controller is four, then
for any value of g8 in Vo’ one would obtain the same reduced model (namely
retaining the first two second-order rigid body modes, n; and “2) and
hence get the same controller. Thus, for n. = 4, the modeling problem
and the control problem are separable. However, this separztion does
not hold for n. > 4, which can be observed from the change in the modal
sequence for 3 = 0 and g+= - this change occurs due to the fact that
(3.3.23b) is not satisfied.

The following two reduced models of order n. = 10 are generated for

the subsequent controller design:
215

1,04

.
Ava 2

P ]
oA
.

. e
4
'h.-‘ e

S : .-
. 4 Lo e
. ‘A..kl_‘;_" . lJL.A Al .

i .

N




[T~ L A i G O Attt b S s Shsdure St S0A S € E It b 2R ARk A AR AP AT A A

(
=

1qF16-5.2A COST PERTURBRTION INDICES (BETA=O) ]
..08@ -
- .08 -
h o 04 4 |
© 024 3
L .00 M -

NS
STISS

Q. ; .j.
3 ]
) SFIG.S.ZB CosT PERTURBATION INDICES (BETR ) s
R .

? 54 [Tg "
u ‘ '.- .. ..

. 0 -f T . 3
i OV IRSAESREO SSZE IS AR 5

MODE NUMBER

« OLY THE 20 MOST SIGNIFICANT

Ol i Mt ko e ann oar g

D B T TRy
-
0.

. S0 t',‘,
P N
TSI fj..l.l ot




1) S1-MCA: retaining the first five most significant modes
(2 rigid and 3 elastic) corresponding to 8 = 0.

This constitutes the set {n,i: ie 1,2, 17, 4, 14:.

2) S2-MCA: retaining the first five most significant modes
corresponding to 8+« ., This constitutes the set

{ny: tel, 2, 41, 17, 42}.

The cost perturbation indices q of these reduced models, evaluated
with respect to only the elastic modes (since the rigid body modes have w
infinite modal costs, they are not included in the calculation of these. i ]
indices) are given below .1
L0395  for S1-MCA 1
q = -
.1592 for S2-MCA ' e
e

Choice of an Evaluation Model
At this point we point out that the full model with 44 modes is too ‘ .4
large even for the purpaoses of evaluating the subsequent controllers. . ]
Hence, the 'evaluation model' should also be of lower order. This .f;.?,.
situation 1s 1llustrated in Fig. 5.3. The dashed 1ines in Fig. 5.3 ____t;‘i
indicate that the controller is designed based upon the reduced model. .'
The solid 1ines indicate that the controller {is evaluated with respect \
to the evaluation model. The only place where the full model is used J
i{s to generate the reduced model and the evaluation model. After the -~.

generation of these models, the evaluation model is treated as the -
'true’ model of the system. . %
_ 9
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FULL MODEL

——n EVALUATION MODEL n, [ 4
REDUCED/ DESIGN R

™ MODEL n. ™ SRR
r .

| | S
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- nen, [e———r1!

FIG. 5.3 The role of an evaluation model

A proper choice of the evaluation model is a research topic by itself,

and we do not attempt to answer it herein. For the present, we shall
select the order of the evaluation model to be n. ® 20, for convenience.
This requires 10 second order modes to be retained, two of which must be
rigid body modes ny and ny,. The remaining 8 modes (elastic) are selected
to be the union of the first 5 modes from Figs. 5.2a and 5.2b, so that

the evaluation model will not be ‘biased' toward either of the reduced

models S1-MCA and S2-MCA. This results in the following evaluation model.

: S-EVAL: {ny: ic (1, 2, 4, 10, 14, 17, 36, 37, 41, 42}

}
:
; 218
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The cost perturbation index associated with S-EVAL is

0121 for g =0
q 2
0933 for g+ =

Now, note from the modal cost formula (3.3.4) that the i-th modal
cost 01 is independent of all the other modes; in particular it is inde-
pendent of the number of modes in the model. Consequently, if the modes
retained in the evaluation model are to be ordered according to their
modal costs, the sequence of these modes remains the same independent of
the model (full or evaluation) used for the calculations. Thus, the
modal cost analysis of S-EVAL would also yield the same reduced models

S1-MCA (for 8 = 0) and S2-MCA (for g-+= ).
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§.2.2 Cost Equiva]eﬁt Realizations.

Note from the CER-algorithm that, unlike the reduced models obtained
by MCA, the cost equivalent realizations are not independent of the model
(full or evaluation) which is reduced. Therefore, since the subsequent
controllers are to be evaluated with respect to the evaluation model, we
use the evaluation model as the 'true' model and generate its CER, so that
the ensuing comparisons will be consistant.

In order to apply the CER-algorithm, we write the evaluation model in

its state-space form as follows.

X =Ax +Bu+Dv , Xckzo

y=Cx (5.2.1a)
Z=Mx+y
where
T T T TA . .
X = {xr » xe } xr = {nl. nZv n" nz}
T A . . .
xe = {ﬂ4o ﬂloc « 9 n429 n49 n]oo ey n42}
4 4 x 4
A = Ar .0 . Ar = |10 12 e R
0 A 0o 0
A
= =2Cw
;8= . 5.2.1
BsDs= Br ’ Br 01, Be = 10 (5.2.1b)
Be Br Be
A
c=m=fc, CJ. C.*[c, 0], ¢, =[c, 01,
and where
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A
w = diag {ug, wygr +ee m42}; ¢ = .001

TA

Br * [bl b2]

g = 5.2.1

e [b4’ b10’ csee 9 b42] ( LR C)

A
:
ce [C4’ clog ese 9 C42] .

Now, the CER-algorithm requires the solution of the Lyapunov equation
(3.4.7a). Since the evaluation model (5.2.1) contains unstable subspace

(corresponding to the rigid body modes), we need to factor out this unsta-

\

} ble subspace, and compute the CER of the stable part (corresponding to
L.

elastic modes {ng, nygs «-e» n42}). Once this is achieved, then the unsta-
ble subsystem of (5.2.1) can be augmented to the resulting CER, to obtain
the reduced model of (5.2.1). In order to do this, write the stable part
of (5.2.1) as

Xq = Agxy + Bu + DW, X, ¢ r'6
Yo * Cexe (5.2.2a)
z, * Mexe +v
where
D, = B and M, = C,. (5.2.2b)
The cost function considered in the CER-algorithm will then be
(5.2.3a)

—
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4 lim 1 t 2,2
Yy, Tt zECJ; llye(e)®ll g do (5.2.3b) -
1
4 lim 1.t 2
Vze Lo fsg Il Ze(a) { v_]d° (5.2.3c)

]
o

With these modifications we are now in a position to apply the CER-
algorithm to the model (5.2.2) with the cost function (5.2.3).
The following results are obtained for 8 = 0, in (5.2.3a).

- .,
.t ‘.
L
-""
AR B »

1) From the structure of Ce and Be in (5.2.1b), observe that the first

Markov Parameter

]

(:eBe = 0. . .I

Since there are three outputs, from Theorem 3.8, the reduced model - }

_ R

of order 3 obtained by the CER-algorithm is not asymptotically sta- ]

ble. (The same result holds for 8+=, since z =y + v.) o ‘ Y

2) The CER-algorithm yields six normalized Hessenberg components of ' o]

dimensions o

i_... . -4

: ni = 3’ i = 1, 2’ 3, 4, 5 6 - ]

-:» n.s1. Z n. =16 E ‘*

' 6§ . §21 1 )

E Thus there are 5 reduced models suggested by the CER-algorithm of . — .J

3 order 15, 12, 9, 6 and 3. Table 5.3 compares these reduced models o

. with respect to the metric [[Ag,ll /Il Agll :

- T ]

p '

k'* B

3 ;

: ;

) ® o
L
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TABLE 5.3 COMPARISON OF DIFFERENT REDUCED MODELS BY CER-ALGORITHM

n I Agg Il Agl Il Aggll 711 Agll
15 1.513 ~e-9 ~e+l0

12 8.812 8.835 .9974

9 109.9 ~e-5 “e+7

6 103.3 19.64 5.26

3 144.8 0 -

Since the unstable subsystem X, ¢ R4 corresponding to the rigid body
modes will be subsequently augmented to these reduced model, we select
the reduced model of order 6, so that the final reduced model of (5.2.1)
would be of order 10, (to be compatible with the reduced models generated

by MCA).

For g+=, identical results are observed and identical reduced models
result, indicating that the modelling problem and the control problem, by

the CER-algorithm are separable. This is due to the relation

Thus, by CER-algorithm, there 1s only one conceivable reduced model

2=y +v,

of (5.2.1) of order 10.

Also observe that the reduced model of order 4, obtained by either
MCA or CER-algorithm, for any value of 8, would be the same, namely the unsta-
ble subsystem X, ¢ We denote

this model by S4.

ST e a e
NP UL S SN Y BB vl

4

corresponding to the rigid body modes.
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This reduced model 1s denoted by S-CER.
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four reduced models. L

1)
2)
3)
4)

In conclusion of this subsection, we have generated the following

ST-MCA:
S2-MCA:
S-CER:
S4:

s o o A0t St hemt B e Sk e i dn B S A et B )
AR L LN

L S Ste R

of order 10, for 8 = 0
of order 10, for 8-
of order 10, for any g

Rigid-body model

The controllers designed based upon these four models are evaluated 3

with respect to the evaluation model, in the following section. ]

1

e
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$.3 Desfan and Evaluation of Controllers

The controllers designed and compared in this section are based . j
upon the following four models of the SOT. - .
1) S1-MCA .1
2) S2-MCA .
3) S-CER ” q
4) s B
5) FULL: fe., the evaluation model S-EVAL. .i
All these controllers are compared with respect to the evaluation model ’
S-EVAL. |
Fig. 5.3 displays the Regulation cost V(y), defined in (4.3.3), vs. o
: 1
the Control Energy, defined in (4.3.4), resulting from different controllers.
There {s hardly any perceptible difference between these curves. However,
all controllers that are designed based upon any reduced models drive the

evaluation model to instability beyond a control energy of .6tE-4 Nz. Hence,

in view of the hardware involved, one would use 2 4-th order controller,
designed based upon S4. The corresponding RMS values of LOS(x) and LOS(y)
can be read from Figs. 5.4a and 5.4b.

Figs. 5.4a and 5.4b display the RMS values of the LOS(x) and LOS(y)
respectively as a function of the Control Effort, where the Control
Effort, is defined as

Control Effort & llz(u) .

and where y(u) is defin:d in (4.3.4). Notice, once again from these

Figures, that all the reduced order controllers (nc-lo. 4) perform just

as good as the full orde-~ controller (nc-zo) until {nstability occurs,

225




...... S ey -
AN . .<.||1 PR 4.1-. Do -4. g Lo 4.4 v T ..4. Y ...,1..4'#.1, — R 7\ S ar I i o w——v Lan o ——p W\1\1.1\.1\l
c . . \ t ' e PR . .- . . ‘ . . s . -
}

.v . . + ‘ . ’ .
R T P LSS

MODEL

O S1-MCR
® S2-MCA
A §-(ER

REGULRTIGN PLOT
SBu =

226

FIG 5.3
® - INSTRBILITY BEYENO THIS POINT

3
.
4
. ¥ ¥ ¥
»

¥ L || w
§ & & § 2 § 0

{¢- O1X) 1800 NOLLUMON

|-

Lem
81330 -
=

o T, ...f...T e, Ltee ‘
L A . . L
PP S W S WY "y A ! WONAERIEN N Yy B




P RSN SL LIS A Ak A A A T A A f VI abA N 208 Nalht el srtaias i 2 e it S e B Bt Dt 0 el 0 asitd MATR AL R At sl st s |

T
o

. 5
“~ .
b \
B N
b. |
-

-

-~
‘ 1
|
. 1 '
P

t FIG S.4R LOS(X) .VS. CONTROL
U

* - INSTRBILITY BEYGND THIS PUINT

O - AODEL
i S1-MCR
S2-MCR
§ -CER

<3000

" <2000 -1

X ¥ b 0 @
@
R

S-EVAL

(X109
;

" .A.L;L‘l

LOB(X) (RAD.)

P s
PP A 4

Y ™ T v T T Y T Y
. - L0 200 F oo Py -+ X0 S0
v 480 -io IR erriil v (Ri8 &

Y

¢ 1.

RN S T,

- 227 S




MY W, g LWL ey
Pl R i R

FIG S.48 LAS(Y) .VS. CONTRAL -

% = INSTRBILITY BEYSND THIS POINT

X0

<X -

(X10 %
]

LOs(Y) (RAD,)

o, .

v Ul-MCH
S2-HCR
S -CR

X + b O
B JORa

-n‘;.u_“

T Y LA T — L )
-J0m  ¢Om Jom 2om . om 2 ~om J0m S A
e TRE. eFFRT (1 (K16 -4 .

¥ LI \J

228




T ST T T T W T T T T T T e W I T Ry T A RN RN I TR R ORS¢

v W T v v P R A R
. v i . .

.w Rt “

TR

e

—p———Y
.
. .

(of course, by LQG-optimal control theory, the 20-th order controller
remains stable over all bandwidth).
The smallest RMS values of the LOS(x) and LOS(y) obtained by

different reduced order controllers fs given i{n Table 5.S.

TABLE 5.5 REGULATION BY DIFFERENT CONTROLLERS

Clearly then, if the mission specifications are

ne | Reduced Model | LOS(x) (Red.) | LOS(y)(Rad.)| ¥/2(u)(n) e
10 $1-MCA 2841 e-5 1703 e-5 | .7563 e-2 SR
10 $2-MCA .2841 e-5 1676 -5 .7738 e-2 1
10 S-CER .2841 ¢-5 .1833 e-§ .7651 e-2 1
4 4 .284] ¢-5 1833 -5 7639 e-2 - U

LOS(x) < .3 e-5 Rad.

LOS(y) < .2 e-5 Rad. K

V%) ¢ 8e2 Newt., =

RS

one would pick the 4-th order controller (marked by ‘1' in Figs. 5.4a,b) i
instead of n_ > 4 so that the performance specifications are met with ‘ ~.- "":
the least amount of on-line controller hardware/software. Recall that -]
the 4-th order controller is designed based upon the 4-th order rigid- 6‘
body model, S4. Hence, for this SOT example, a rigid body model seems ;:_.;i
to be sufficient for the controller design. :
Fig. 5.5 shows the RMS value of the {nput enérgy at the eight '4
actuators, carresponding to the 4-th order controller. Observe that "‘”—]
all the actuators are expending approximately the same amount of control g:
energy, which {s due to the symmetry of the structure and the equal Ty
penalty (i.e. ReIg) on all the actuators. T .
229
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However, this choice of controller is prone to instability - even

S .
. et
. et s

AR N

- )

——

a little increase in the control effort (which may happen due to the
variations of the plant parameters) may drive the closed loop system
unstable. Hence, in order to ensure some stability margin, the choice

of the 4-th order controller, marked by '2' in Figs. 5.4a, b, is

.,;
S _,L o

preferable. The corresponding LOS(x), LOS(y) and the control effort o]
is given below. - ]
L

LOS(x) = .3036 e-5 Rad. ‘

LOS(y) = .1823 e-5 Rad. ]

CONTROL EFFORT = .7186 e-2 Newt. ~ ';

L/

The control energy distribution is displayed in Fig. 5.6. This .9
choice of controller yfelds larger RMS value for LOS(x) than controller i?ﬁ
_-

'1'. However note that, controller '1', which uses more control energy .4
than controller ‘2', does not give a better RMS value for LOS(y) - this : ?
is due to the effect of the model errors, which are more pronounced f
for controllers with higher control energy. j;;‘ﬁj
. @

. e

.

)
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5.4 Conclysion

The model reduction schemes, namely MCA and CER-theory, presented
.in Section 3, have been applied, in this section, to a Solar'Optical

Telescope. Selecting four reduced models and an evaluation model,

di fferent controllers have been designed and evaluated. _Z;
Based upon the results obtained,it is concluded that the 4-th Igl&?}ﬁ
order rigid-bady model 1{s sufficient for the controller design. Two ;:"f‘;;
controller designs have been proposed, namely controllers '1' and '2'. R
Even though, controller '1' regulated LOS(x) better, it is prone to -
instability. In order to ensure some stability margin, controller ‘2' S
) ®

is preferred. This controller yields the following regulation and f
control effort. . J
LOS(x) = .3036 e-5 Rad. ]

’ ®

Control Effort = .7186 e-2 Newt. o7

To check if any of the actuators uses more control energy than allowable » \.‘
(by mission specifications), Fig. 5.6 has been presented which displays ”5¢Tﬁ
the control energy distribution for controller '2'. f;i
=

IR
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6.0 CONCLUSION

This report has presented the design of reduced order controllers
based upon reduced models of a given system. Considering the philosophy
of such a design scheme, it is pointed out that the reduced models
should reproduce accurately not only the output y, but also the measure-
ment z.

The basic model reduction scheme used in this report is Component
Cost Analysis (CCA). In particular the following two special cases of
CCA have been adopted for the model reduction purposes.

1) Modal Cost Analysis, (MCA)

2) Cost Equivalent Realizations, (CERs).

Both these schemes are shown to yield reduced models whose cost pertur-
bation indices can be predicted exacfly. f.e.q= a. In addition CERs
have (in fact they are defined by) the property q = 0. However for
mechanical systems for which modal data is available MCA s much simpler
to implement than the CER-algorithm.

Section 4 has presented the controller design and evaluation strategy
and has offered metrics for the evaluation and comparisdn of the
controllers. |

A simply supported beam example has been formulated in Section 2,
and has been used as a numerical example for the f1lustration of the
design procedure. For this example, it turns out that the reduced models
by MCA are superior to the CERs. It has also been observed that the
CERs tend to contain high frequencies, while the reduced models produced
by MCA retain low frequencies. Consequently, 1t s shown by simulation,
that the trajectory errors associated with CERs are smoother than the
errors associated with the MCA-reduced models. Using the same example
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in Section 4, it is pointed out that, at low bandwidth of the controllers,
the influence of model reduction schemes is not significant. But at

high bandwidth, the performance of the controllers depend, remarkably,

on the model reduction scheme adopted. Also observed in Section 4 is
that the effect of the order of the reduced model is significant only

at high bandwidth.

Same téchniques have been adopted for the controller design for
a Solar Optical Telescope (SOT) in Section 5. It turns out that, for
this SOT, it is sufficient to consider only the 4-th order rigjd-body
model of SOT for the controller desfgn. Based upon the performance plots
produced in Section 5, a 4-th order controller has been proposed as a
suitable choice.

It must be pointed out that the observations and results presented

in Section 5 are based upon the 10-mode evaluation model, S-EVAL. These
observations may change for a different choice of the evaluation model.

The question of the appropriate choice for the evaluation model remains

unanswered.
o o -1
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APPENDIX: PROOFS OF THEQREMS IN SECTION 3

Proof of Theorem 3.1

Partition the covariance matrix X as

1 X2 e X

X= X0 X5 .. Xy (A.1a)

0 fe o S

] where ®
A ny (t) . 2x2 -]

Xjg = VmE qf [ng(t), ny(t)drer (A.1b) s

Using the special structure of the matrices in (3.3.2), the (i,j)-block _ Q

partitioned equation of (3.2.4b) yields,

' T T .
. xiJAjj"'A‘H xij +viwvj 0. (A .2) :
For j=i, the solution X;; to (A.2) {s given by, i
2 C]
LA 1 07] . | L
. X, = ——% 2| - (A .3) -
° 4zy v 0 o ..
Now, rewrite (3.2.4a) as
° 7, = Tr(cTgex], . = Trc,Toc X, 1+ rz' Tricloc X, 1. (A .4) o
. g = Tricacxdy i Ed L TR S )

IA R
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Using (3.3.2c) and (A.3), the first term on the right hand side of

(A.4) can be expressed as

T -1 2, . 24502 2
TR[Cchixii] iz, » 3 {”Pi”Q * w; ”pi“Q} “bi”U' (A.5)
i

Hence, to complete the proof, we will now show that, under any of the three

conditions of the theorem, the following relation holds.

-~ - T
v; = Trlc, 'ac X1 s (A.6a)

or equivalently, N
T =
Z] Tr[c1 ijxji] 0. (A.6b)
#i

Tyn. = g
a) b,i Ubj 0, j#i.

From the definition of 0, and @ in (3.3.2), this implies that

T
viwvj =0, J#1.

Hence, for non-zero damping, X;; = 0, is the unique solution to (A.2),

J
since both Agy and Ajj are asymptotically stable. Clearly, then, (A.6b)

holds.

b) cloc, =0, §#i
1 j 1 ]
Obviously (A.6b) holds.

C) ‘1- -> O’i’]’ 2, eesy N’

with u; # u; and PiTQPj . PiTQP s § A
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*‘ Partitioning X, as IR
. j e
: no_ g
i x.i : xij
xij = ! - (A.7a)
* 21 122 . .
: X3 i b
3 write (A.2) as
no 12 2 noou2 0
? xij xij 0 -uj 0 1 Xi5 xij 0 )
3 + + =0
| 21 22 2 21 22 T
lij x,u ] ’2;1 Nj ’Wi 2;1 ﬂli xij xij 0 bi UbJ
" (A.7b)
‘ ]
b
; : to obtain tha following relations, (after some algebdraic manipulations).
T =2
b, Ub; * w
12 i Py Loy A 33)
¢ NI A WD 6 o w6y ( ,
- “43 Ui % 19 % “i§
¢
& 21 _ _ 12 4.8b
‘ X3 " %44 (A.80)
‘.
1% 2 A.8¢)
*i3 :.';LZ i (
J
T -2
I M W F R (A.8d)
where
o 8, 32z, wg *2z.0, |
’ i i1 «
' . i (A.8e) -
. 4 2 2
“15 ‘I'i Uj .
° Now, for ¢, + 0, ¥, the following occurs.
239

a .4.

4.

B b




vl.l ' f

'TT. IU-! *rv AR Aa

~v

Cial T »

. i m, m W T W T WY W — 4~ WY g~ g~ W W T W e T -
DI S T e i i TN I AT N T AT T IS MR AN S AP SN G SR At vl St and ssacaetc AN

12 T -2
X.ij -> bi UbJ/ mij (A,ga)
1 22
x]'j -0, xij-»O . (A.9b)
Therefore, substitution of (A.9) (A.7a) and (3.3.2a) yields,
. . +  blub,
Tr[Cchjxj‘i] = (piQPj = Pi QPJ) .E’—'ijz =0, J#1 (A.10)

where the last equality follows by hypothesis.
Hence, in all the three cases, the equation (A.6a) is shown to be

satisfied. In view of (A.5), this concludes the proof. #

Proof of Theorem 3.2

_____

Assume, without loss of génera1ity, that the modes have been ranked
according to (3.2.6), so that only the first r 'components' (as defined
in (3.3.1)) are retained in the reduced model. Now, from the definition

of the cost perturbation indices, it suffices to show that
Vg = Vp

to prove the theorem.
Recall from the previous proof that, under either of the three

conditions of Theorem 3.1, we have

T T
) Tr[Cchi xii] . (A.11a)

R E :
V. = =
ROoqsr 1 4m

where xii’ i=1,2,... r, satisfies

X.. AT, + A ;X

T
ii i i+viwv 0 (A.12b)
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and can be independently calculated by considering only the i-th modal

Note that the modal costs Gi are independent of other modes, n

data. Furthermore, this independence and the expressions (A.11) hold
for any number of modes. Consequently, the cost Vg associated with the

reduced model is given by

r
Vp = X Vi (A.12a)
i=]
where
= T X =
vy =Trlce Xl i =0,2, . (A.12b)

and where iii satisfies

- T s T
Xii Ajq + Ay Xy + 000, = 0. (A.12c)

Since Ay, is asymptotically stable, comparison of equations (A.12c) and
(A.11b) reveals that

-~

xii :xii ’ is= 1. 2, seep I (A.13a)
and therefore

!LI = V1 : (A.13b)
and hence Vp = Vp . #

Proof of Theorem 3.3

In order to prove the theorem we will follow these three steps in
sequel.
1) Establish the existance of a closed form, diagonal solution
to the Riccati equation (3.3.10).
2) Show that the closed Toop system can be expressed in the

decoupled modal form.

3) Derive the expressions (3.3.14) from Theorem 3.1.
241
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[
- 1) Defining the state vector x as
4

. A L ] . >
F‘ xT = [n] Ny Mg Ny - My "N] , (A.14a)
X
—i the system matrices take the following form.

A= diag {A11, Azz, eeey ANN} (A.]4b)
b
2 0 1

' A, = (A.14b)
“E‘ R

B

g 1 0 .
EA B= §2 » Bi = T (A.14c)
1 f by
L N
; Now, assumption (A2) fmplies that,

' %BR']BT -%- diag 0, ¥, 0, ¥3, ..., 0, rlr . (A.15a)

and assumption (A3) implies that

cTac = diagle,?s 12 w2y 1, .ouy w2y Th (A.15b)

Henca, the Riccati equation (3.3.10) can Le written in its partitioned
form as

K1 Kz eee Ky

;
.
-
b
[
{

f

[]

5
\ KT R M R | S A A A
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where CI QC1 : diag {u?. 1}. Now from assumption (AZ), the system is

controllable (since every mode is now independently controllable). There-

fore, the solution to (A.16) is unique [ 8 ].

We claim now that the solution K to (A.16) is

K = diag {Kn. KZZ’ cees KNN}

where

(A.17a

(A.17b

and where k1 and ki are defined in the theorem. To prove our claim, we

show that (A.17) does solve (A.16) and hence by uniqueness, it is the

solution to the Riccati equation (A.16).
(A.16)

yields

T

T

Substitution of (A.17) into

1 T = =

(A.18)

which must now be satisfied by the K, defined in (A.17b). Substitution
of (3.3.14b-e) verifies this.

«
(P . A
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8 eeo e 0 K]] L . K]N %QCI L] 0 ) .-.:

° . Q0 - ‘.‘":‘_..‘
. . : . . : [ 3 ) = 0 : .

. T . T - . T -

BNBN_ _K]N KNN_ _0 CNQCN_ ‘-~:;'-4
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Thus, a closed form solution to the Riccati equation (A.16) is
obtained.
2) Now, the optimal control law is given by [8 ]
us- %-R"BTKx (A.19a)

which, in view of (A.14a), (A.l4c) and (A.17) becomes

i a « P P PN
CR P v s et et
o . . . [ RIS L.
L w : PLE N . Lt e e,
s, LRI ' ’ [ . i « .
. e . . et
- : s W ole_ v o o v -

1 g 5 1 % .
Uu=z-2 7 bk, n: -~7F bk e . A.19b
pym T egn T (A-150)
Using (3.3.11), this expression can be rewritten as o
N N —
u=- n;, - L . )
AT k. )
where, g; = 171 e (A.18d) . -
) : -
[] A riki ‘V
9" = 2 ey (A.19) , °
b SRR
and where e, is the unit vector defined in (3.3.11b). Note that, since :_ -
by = rye;s from (A.19d) and (A.1%) we get A
blg. =0 and blg'=0, J#i (A.20)
i%J i7J ’ :
Therefore the closed loop representation (3.3.11) simplifies to
5 ;1. + ZE_iI,i ;'1' + Ef ng * bI w (A.21a)
: 282 1 _2.12
: where w g wg + b‘igi wy * ry T kiz (A.21b)
-.‘ - - A T ] 1 2
% and 2y = 235wy + bigst = 2qqug * 5 r'ik13 (A.21¢c) .
- It is clear from (A.21a) that the moces n, of the closed loop system are SRR
[ R
F, also decoupled. 4 .' Ce
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3) To obtain the expression (3.3.14), note that the cost function

) 25

v= 2 TE L tivallig + o llutolife (A.222)

can be written as

. P . [ S R
v' i " /- - N ‘("'.’- .
. . v . . « e W . r e
. ‘__. ) VR -4.. SRR S

) B e e o g P—p—
. d ) i
foe 68
Sttt .o .
1

im 1
valim lg ;ot uv(q)ué do (A.22b)
where
®
A
i, o1 (A.22¢) _1
A . . ' ]
l and Q = diag {Q, pR} . (A.224d) o
& | e
f Now from (3.3.12a,b) and (A.19), (A.22c) can be expressed in the ]
! required form as 1
v P (A.232)
=) P.n, + P.'n A.23a '
TH IR H I *
where, "j.-_i
a RN
Py = e, Te & (A.23b) RSN
®
O e
[ 91
A pune
and Pt s [ e 2 (A.23c)
¢
| 94" ]
b0_ Now, since b{u bJ =0, J# 1, Theorem 3.1 can be appiied to the closed
: loop system (A.21), to get the closed-lcop modal cost formula as
o - 1 2 ., -2 2 2
: V. = —=1— dIrgllg + %Il 7l oy (A.24)
. " W glig * w1l Pylig Hliogh -
245
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Substitution of (3.3.11), (3.3.12), and (A.23) in  (A.24) results in
(3.3.14), thereby completing the proof. #

Proof of Theorem 3.5
N N

and
Y mny ¢ 1 mth
Z3) mn, + m,'n. + v.

Then (3.3.23a) implies that
m; = Tp; and my* = Tp,* (A.25)
Substitution of (A.25) in (3.3.22a) yields

. 1 2 2 2
vV, = ——3 {llp a, ey ety g Hibglly  (A.262)
T, L % B T L S B T

which, in view of (3.3.23b) becomes
y 2 2 2 2 -
V, = —2tllpllg +wf oyl gt Hbyllg=av (A.26b)
z 4;1% i'q i i'Q ittu Y;

Therefore,

001 = 0’1+ a&zi = (1 + ca)l}yi (A.27)
Since (1 + a8) is positive constant, the ranking of the modes by the open
loop modal cost 001 is not affected by « and 8. Hence, for a fixed order
r of the reduced model, 8 does not affect the modes retained in the

reduced model. #

Proof of Theorem 3.6

Substitute the normalization condition (3.4.2) in the general expres-
. sions for component costs (3.2.4a) to get

l‘.
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v, = TrlcTocly; = [cTaclyys 121,20 ey (A.28)

(Since the 'components' are individual coordinates, [CTQC],ii is a scalar).
The proof now follows from the structure of the output matrix C in

(3.4.5b) and from (3.4.4). ' ]

Proof of Theorem 3.7

The proof relies on a result derived in [ 17], which is restated

here.

Lemma 3.1, [ 17] Let Ag be an eigenvalue of a matrix A. Then the sensi-

tivity of X to the perturbations in A, measured by
8 a2
& = || 7
1=

where || (-3 112 & Tr {[-37[-1}, 1s minimized 1f and only if A is normal
(i.e., AAT = ATA).

Now note from Theorem 3.6 and from (3.4.4) that the component costs

are the eigenvalues of CTQC. {.e.,

vy =aglcToe), 1=1,2, ..,m. (A.29)

Since, CTQC is symmetric (hence, normal), the proof follows from Lemma 3.1.

#
Proof of Theorem 3.8
Partition the model (3.4.5) as
X A A X D
Rl (PR ART) [ "R LRI (A.30)

| PmArf Y] |71

y = [cg c;] xR
b
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n n
where xo ¢ R 7 and x; ¢ R t n, +n_=n. (Note from (3.4.5b) that for

n.2n, Cr= 0.) Since the covariance X satisfies (3.2.4b), substitution

of (3.4.2), and using the partitioned form (A.30) in (3.4.2) yields

PO AT U

1
T T - 4
ReOAR|L IR TR ! o7 -0 e
R T )
T T
A A A A D
T Ay w4 T (3.31)
The first partitioned equation of (A.31a) is written out as .J
4
T T : E
AR + AR + vﬂva = Q. (A.31b) ;4
(1) Now let ¢ be a left eigenvector of A, corresponding to the eigenvalue _ i
A;(Ap), .e., € and 2 (Ap) satisfy .
M
T — D
and Agg = 11(AR)5 . (A.32b) o

where '*' denotes the conjugate transposition and '~' denotes the conjuga-

tion. Pre- and post- multiply (3\.31b) by £* and £ respectively to get

E*A,T{E + EYARE + :*vav;g =0, (A.33a)
which upon substitution of (A.32) ylelds 3
o
T 112 2
! 2 Re{n (AQ)} = -f{ogelly, 7 el ® . (A.33b) 1
. ' "
- - Since the right hand side of (A.33b) cannot be positive, part (i) is
4
[‘.. thus proved. ' o,
a 1
\ (i1) Now, from (A.33b) see that 1
¢ Re{a;(Ag)} = 0 1f and only if £*D, = O. (A.38) ’ o1
248 1
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E (3.61), C1A1202 = 0 if and only if 02 = 0. Proceeding similarly yields,

E JL (p) =0, 2=1,2, ..., 1, Dj =0,§=1,2, ..., 1. Hence from the

T‘ definition of Dy 1n (3.4.14b), 1t follows that

i;‘ 249
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In this event (Re{xi(AR)} = Q) the right hand side of

E*TAL + Ag = ~DpDp 1A%, voa=1, 2, ., (A.35a)
is zero. Hence (3.7.35a) leads to
ewtlp = - evaATA%D = o, (A.)A%D (A.35b)
R R RPr%R = ~}i\AR)e™ g0y - .

(A.35b) becomes
(A.35a)

For each {a = 0, 1, 2, ..., n_,} the right hand side of
zero. Thus fora=0,1, 2, ..., nr-Z, the left hand side of

leads to

n -1
E*[0puAgDps <. » ApT Dpli= O if and only 1f Re(r,(Ag)} = 0
(A.36)
Thus from (A.34) and (A.36) , Re{xi(AR)} = 0, if and only {if rank

n
r
[vR’ ARDR, sesey AR

is uncontrollable, [8 ]. This proves part (i) of the thecrem.

DR] # n_, which implies that the matrix pair (AR.DR)

(i{i) Let Jz(p) = 0, L-- ]. 2' XXX 10 Theﬂ.
J}(P)’ 0= c]a' =0,

where the structure in (3.4.5) has been used. Notice from (3.4.4) that,

for a positive definite Q, (3.4.4) is satisfied if and only if rank [c]]sn].
Hence, 0101 = 0 if and only if v] = 0. Now, consider,

Since [C;] # 0, and Ay, 1s monic by construction (i.e., rank [Aiz] =n, <Ny,
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. . .
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i
0 =0 for all n, _<_j£1 ny-

Clearly then the reduced model (3.4.14) is not controllable, and hence by
(ii) it is not asymptotically stable for all
i ~4
n. =< jzl ng o
#
Proof of Theorem 3.9 : '-_;
(i) The steady state output covariance can be written as e
1im ¢ (“/ T lim ¢ T T T
tom E y(t)y'(t)} = tom E (CRXp(tdXp(t)Cp} = CpXoCo  (A.36) ]
]
]
where Xp is the steady state covariance of the states xp. Now, Xp ! .
satisfies, . '-
X AT + A X, + DWDT = 0 (A.37)
RAr * Ag¥p * OgiPp = 0 . . . e
Since all CERs are asymptotically stable, comparing (A.37) with (A.31b) ) 1
shows that, 1
R
) L)
Xg = I (A.38) ]
r
Therefore,
e
Tim 2T T T =
to Ely(tly (E)} = Colp = CCy 75 np 21y R ;:_.-;_-:_-?
where the structure of (.'R in (3.4.14) has been used. Furthermore, since :.:-Zf;
X =1, from (3.4.2), we have 3 .:
T T o ayeT . lim T |
thus proving (3.4.15a). ]
p g ( ) ’ R
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To prove (3.4.15b), consider the trajectories x(t) and xR(t),

(assuming zero initial conditions):
t Aa
x(t) = [etw(o)ds , (A.39a)
o

and
t ARa
xp(t) = [ e " Dw(o)do . (A.39b)
R > R

Hence,

T
TA

= 1M e EfAxg(t) + Dgu(t)] fwT(a)D dosch

i t Alo
- D ety [xglomTo)gg ¢ ¥ cocy

11im T T
+ 7 vm CRORYORCR - (A .40a)

where the screening property of the delta function
t T t
Efw(tw' (c)do = [ Ws(t-c)do = W/2
] 0

has been used to obtain the second term in  (A.40a). Since, xR(t), and
w(s), t > o, are uncorrelated with each other, the first temm in (A.40a)

becomes zero resulting in

Am ™ Ety(e)a (t)1e 5C DlmicT
T
=y o0, . (A .40b)

Similarly,
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lim E{g(t)gT(t)}=%.CDWDTCT= e owle; .

tom

= UM e (V) .

(i1) Consider,

R°R

and
c

Jz(i) Aglp = CIAIIDI + CZATZUZ = CAD = Jz(p),

R
for all i =2, 3, ..., p .

Part (ii) is thus proved by extending this argument to Jj(i), =12, ...,1.
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of
Rome Air Development Center

RADC plans and executes nesearch, development, test and
selected acquisition progrnams in support of Command, Control
Communications and Intelligence (€31) activities. Technical
and engineening suppornt within areas of technical competence
A8 provided to ESD Program Offices (P0s] and othen ESD
elements. The principal technical mission areas are
communications, electromagnetic guldance and control, sur-
veillance of ground and aerospace obfects, intelligence data
collection and handling, Angornmation system technology,
Lonospheric propagation, solid state sciences, microwave
physics and electronic reliability, maintainability and
compatibility.




